Comparative study of black carbon mixing state characterization: Evaluating Only-SP2 and CPMA-SP2 techniques for enhanced accuracy

Black carbon Mixing state Single-Particle Soot Photometer Refractive index Absorption enhancement
["Li, Zhengyu","Peng, Yan","Cheng, Yong","Huang, Xiaofeng","He, Lingyan"] 2026-03-01 期刊论文
Black carbon (BC) mixed with non-BC components strongly absorbs visible light and leads to uncertainty in assessing the absorption enhancement (Eabs) and thus radiative forcing. Traditional Single-Particle Soot Photometer (SP2) combined with the leading-edge only fitting (the only-SP2 method) derives BC's mixing states through Mie scattering calculations. However, errors exist in retrieved optical diameter (Dopt) and MR due to the assumption of the ideal spherical core-shell structure and the selection of the calculation parameters like density and refractive index (RI) of the components. Here, we employed a custom-developed tandem CPMA-SP2 system, which classifies fixed-mass BC to characterize the mixing state, then compared with the only-SP2 method in quantifying the mixing state and Eabs. The field measurements show that the SP2 demonstrates variability in assessing the mixing state of BC in different aging states. The thickly-coated particles with small core approaching the internally mixed state are more sensitive to the change of calculated RI. The Dopt decreases with the RI increasing, indicating that this method accurately measures both Dopt and Eabs when a reasonable refractive index is selected for calculation. However, for thinly-coated particles with moderate or large core, this method results in significant deviations in the computed Eabs (errors up to 15 %). These deviations may be caused by the various shapes of BC and systematic errors. Our results provide valuable insights into the accuracy of the SP2-retrieved Dopt and MR based on Mie calculations and highlight the importance of employing advanced techniques for further assessment of BC's mixing state.
来源平台:JOURNAL OF ENVIRONMENTAL SCIENCES