利用观测资料结合遥感数据,基于半阶导数法估算青藏高原多年冻土区唐古拉和西大滩两个观测点2010—2012年的地表土壤热通量,并与“观测值”(利用10 cm土壤热通量和5 cm土壤温度观测数据计算得到的地表土壤热通量)及已有的3种遥感估算方法(GLEAM、PM-RS和组合法)进行对比分析。结果表明:1)半阶导数法估算的地表土壤热通量(G0)与观测G0具有较好的一致性,估算精度高;2)与已有的GLEAM、PM-RS和组合法相比,半阶导数法表现更好,估算的两个站点G0的相关系数(R)分别为0.85和0.81,偏差(Bias)分别为-0.70和0.08 W/m2,均方根误差(RMSE)分别为5.78和8.79 W/m2,平均绝对误差(MAE)分别为4.22和6.81 W/m2。相较于其他方法,半阶导数法的优势在于物理机制明确,参数设置简洁,仅需单层地表温度值和土壤热属性数据作为模型输入。
利用观测资料结合遥感数据,基于半阶导数法估算青藏高原多年冻土区唐古拉和西大滩两个观测点2010—2012年的地表土壤热通量,并与“观测值”(利用10 cm土壤热通量和5 cm土壤温度观测数据计算得到的地表土壤热通量)及已有的3种遥感估算方法(GLEAM、PM-RS和组合法)进行对比分析。结果表明:1)半阶导数法估算的地表土壤热通量(G0)与观测G0具有较好的一致性,估算精度高;2)与已有的GLEAM、PM-RS和组合法相比,半阶导数法表现更好,估算的两个站点G0的相关系数(R)分别为0.85和0.81,偏差(Bias)分别为-0.70和0.08 W/m2,均方根误差(RMSE)分别为5.78和8.79 W/m2,平均绝对误差(MAE)分别为4.22和6.81 W/m2。相较于其他方法,半阶导数法的优势在于物理机制明确,参数设置简洁,仅需单层地表温度值和土壤热属性数据作为模型输入。
利用观测资料结合遥感数据,基于半阶导数法估算青藏高原多年冻土区唐古拉和西大滩两个观测点2010—2012年的地表土壤热通量,并与“观测值”(利用10 cm土壤热通量和5 cm土壤温度观测数据计算得到的地表土壤热通量)及已有的3种遥感估算方法(GLEAM、PM-RS和组合法)进行对比分析。结果表明:1)半阶导数法估算的地表土壤热通量(G0)与观测G0具有较好的一致性,估算精度高;2)与已有的GLEAM、PM-RS和组合法相比,半阶导数法表现更好,估算的两个站点G0的相关系数(R)分别为0.85和0.81,偏差(Bias)分别为-0.70和0.08 W/m2,均方根误差(RMSE)分别为5.78和8.79 W/m2,平均绝对误差(MAE)分别为4.22和6.81 W/m2。相较于其他方法,半阶导数法的优势在于物理机制明确,参数设置简洁,仅需单层地表温度值和土壤热属性数据作为模型输入。
利用观测资料结合遥感数据,基于半阶导数法估算青藏高原多年冻土区唐古拉和西大滩两个观测点2010—2012年的地表土壤热通量,并与“观测值”(利用10 cm土壤热通量和5 cm土壤温度观测数据计算得到的地表土壤热通量)及已有的3种遥感估算方法(GLEAM、PM-RS和组合法)进行对比分析。结果表明:1)半阶导数法估算的地表土壤热通量(G0)与观测G0具有较好的一致性,估算精度高;2)与已有的GLEAM、PM-RS和组合法相比,半阶导数法表现更好,估算的两个站点G0的相关系数(R)分别为0.85和0.81,偏差(Bias)分别为-0.70和0.08 W/m2,均方根误差(RMSE)分别为5.78和8.79 W/m2,平均绝对误差(MAE)分别为4.22和6.81 W/m2。相较于其他方法,半阶导数法的优势在于物理机制明确,参数设置简洁,仅需单层地表温度值和土壤热属性数据作为模型输入。
利用观测资料结合遥感数据,基于半阶导数法估算青藏高原多年冻土区唐古拉和西大滩两个观测点2010—2012年的地表土壤热通量,并与“观测值”(利用10 cm土壤热通量和5 cm土壤温度观测数据计算得到的地表土壤热通量)及已有的3种遥感估算方法(GLEAM、PM-RS和组合法)进行对比分析。结果表明:1)半阶导数法估算的地表土壤热通量(G0)与观测G0具有较好的一致性,估算精度高;2)与已有的GLEAM、PM-RS和组合法相比,半阶导数法表现更好,估算的两个站点G0的相关系数(R)分别为0.85和0.81,偏差(Bias)分别为-0.70和0.08 W/m2,均方根误差(RMSE)分别为5.78和8.79 W/m2,平均绝对误差(MAE)分别为4.22和6.81 W/m2。相较于其他方法,半阶导数法的优势在于物理机制明确,参数设置简洁,仅需单层地表温度值和土壤热属性数据作为模型输入。
概述了可燃冰的基本概况,简述了国内外可燃冰和地热能的勘探开发方式现状,提出了CO2置换联合地热开采陆域可燃冰-地质封存一体化技术,并分析了该技术的优势,概括了其在技术、投资及环境层面存在的不足和挑战,并对其发展前景进行了展望。
概述了可燃冰的基本概况,简述了国内外可燃冰和地热能的勘探开发方式现状,提出了CO2置换联合地热开采陆域可燃冰-地质封存一体化技术,并分析了该技术的优势,概括了其在技术、投资及环境层面存在的不足和挑战,并对其发展前景进行了展望。
概述了可燃冰的基本概况,简述了国内外可燃冰和地热能的勘探开发方式现状,提出了CO2置换联合地热开采陆域可燃冰-地质封存一体化技术,并分析了该技术的优势,概括了其在技术、投资及环境层面存在的不足和挑战,并对其发展前景进行了展望。
针对季节性冻土区路基冻害问题,提出引入人工供热技术,构建新型主动供热式路基。在对比各类热源技术特征与资源条件的基础上,设计与制作一款路基专用地源热泵型供热装置。装置采用直接膨胀式换热形式,换热器为小直径螺旋盘管,便于机械化钻孔布设与"孤岛"运行,通过模型试验研究其制热性能及能效性影响规律。结果表明,季节性冻土区的地热能利用具有良好的技术性和资源性条件,装置在冬季的供热温度可达50℃以上,吸热温度可达-10℃以下。土体热扩散率与升温幅度随着与热泵距离的增大而减小,日均有效制热系数(COP)先增大、后减小,最大COP可达4.16。热泵制热性能受到供热段土体温度的显著影响,环境温度对其影响不显著,供热性能稳定。面向单线铁路路基快速解冻抢险时,建议热泵布置间距取1.5 m~3.0 m,供热容量宜设计为0.6 kW~1.8 kW,长期运行时应合理控制启停时间比例与供热温度水平。
针对季节性冻土区路基冻害问题,提出引入人工供热技术,构建新型主动供热式路基。在对比各类热源技术特征与资源条件的基础上,设计与制作一款路基专用地源热泵型供热装置。装置采用直接膨胀式换热形式,换热器为小直径螺旋盘管,便于机械化钻孔布设与"孤岛"运行,通过模型试验研究其制热性能及能效性影响规律。结果表明,季节性冻土区的地热能利用具有良好的技术性和资源性条件,装置在冬季的供热温度可达50℃以上,吸热温度可达-10℃以下。土体热扩散率与升温幅度随着与热泵距离的增大而减小,日均有效制热系数(COP)先增大、后减小,最大COP可达4.16。热泵制热性能受到供热段土体温度的显著影响,环境温度对其影响不显著,供热性能稳定。面向单线铁路路基快速解冻抢险时,建议热泵布置间距取1.5 m~3.0 m,供热容量宜设计为0.6 kW~1.8 kW,长期运行时应合理控制启停时间比例与供热温度水平。