共检索到 26

以东北地区为研究对象,分析多年冻土退化程度及空间分布。通过收集关键气象要素,使用多元线性回归模型修正部分地面温度,基于多年冻土顶部温度(temperature at the top of permafrost,TTOP)模型,利用ANUSPILN 软件进行插值,分析东北多年冻土时空分布变化。结果表明,1970s、1980s、1990s、2000s和2010s的多年冻土面积分别约为3.99 × 105、3.41 × 105、2.31 × 105、1.80 × 105 、1.59 × 105 km2。1970s—2010s,东北地区的多年冻土面积显著减少约2.40 × 105 km2,降幅高达60.08%。多年冻土面积占东北地区总面积的比例从27.66%下降至11.04%,而季节性冻土面积比例则从72.34%增加至88.96%。模型结果与实际钻孔数据差值仅为0.05 °C,且使用修正地面温度数据的模型结果高于现有研究...

期刊论文 2025-06-20

以东北地区为研究对象,分析多年冻土退化程度及空间分布。通过收集关键气象要素,使用多元线性回归模型修正部分地面温度,基于多年冻土顶部温度(temperature at the top of permafrost,TTOP)模型,利用ANUSPILN 软件进行插值,分析东北多年冻土时空分布变化。结果表明,1970s、1980s、1990s、2000s和2010s的多年冻土面积分别约为3.99 × 105、3.41 × 105、2.31 × 105、1.80 × 105 、1.59 × 105 km2。1970s—2010s,东北地区的多年冻土面积显著减少约2.40 × 105 km2,降幅高达60.08%。多年冻土面积占东北地区总面积的比例从27.66%下降至11.04%,而季节性冻土面积比例则从72.34%增加至88.96%。模型结果与实际钻孔数据差值仅为0.05 °C,且使用修正地面温度数据的模型结果高于现有研究...

期刊论文 2025-06-20

以东北地区为研究对象,分析多年冻土退化程度及空间分布。通过收集关键气象要素,使用多元线性回归模型修正部分地面温度,基于多年冻土顶部温度(temperature at the top of permafrost,TTOP)模型,利用ANUSPILN 软件进行插值,分析东北多年冻土时空分布变化。结果表明,1970s、1980s、1990s、2000s和2010s的多年冻土面积分别约为3.99 × 105、3.41 × 105、2.31 × 105、1.80 × 105 、1.59 × 105 km2。1970s—2010s,东北地区的多年冻土面积显著减少约2.40 × 105 km2,降幅高达60.08%。多年冻土面积占东北地区总面积的比例从27.66%下降至11.04%,而季节性冻土面积比例则从72.34%增加至88.96%。模型结果与实际钻孔数据差值仅为0.05 °C,且使用修正地面温度数据的模型结果高于现有研究...

期刊论文 2025-06-20

以东北地区为研究对象,分析多年冻土退化程度及空间分布。通过收集关键气象要素,使用多元线性回归模型修正部分地面温度,基于多年冻土顶部温度(temperature at the top of permafrost,TTOP)模型,利用ANUSPILN 软件进行插值,分析东北多年冻土时空分布变化。结果表明,1970s、1980s、1990s、2000s和2010s的多年冻土面积分别约为3.99 × 105、3.41 × 105、2.31 × 105、1.80 × 105 、1.59 × 105 km2。1970s—2010s,东北地区的多年冻土面积显著减少约2.40 × 105 km2,降幅高达60.08%。多年冻土面积占东北地区总面积的比例从27.66%下降至11.04%,而季节性冻土面积比例则从72.34%增加至88.96%。模型结果与实际钻孔数据差值仅为0.05 °C,且使用修正地面温度数据的模型结果高于现有研究...

期刊论文 2025-06-20

以东北地区为研究对象,分析多年冻土退化程度及空间分布。通过收集关键气象要素,使用多元线性回归模型修正部分地面温度,基于多年冻土顶部温度(temperature at the top of permafrost,TTOP)模型,利用ANUSPILN 软件进行插值,分析东北多年冻土时空分布变化。结果表明,1970s、1980s、1990s、2000s和2010s的多年冻土面积分别约为3.99 × 105、3.41 × 105、2.31 × 105、1.80 × 105 、1.59 × 105 km2。1970s—2010s,东北地区的多年冻土面积显著减少约2.40 × 105 km2,降幅高达60.08%。多年冻土面积占东北地区总面积的比例从27.66%下降至11.04%,而季节性冻土面积比例则从72.34%增加至88.96%。模型结果与实际钻孔数据差值仅为0.05 °C,且使用修正地面温度数据的模型结果高于现有研究...

期刊论文 2025-06-20

以东北地区为研究对象,分析多年冻土退化程度及空间分布。通过收集关键气象要素,使用多元线性回归模型修正部分地面温度,基于多年冻土顶部温度(temperature at the top of permafrost,TTOP)模型,利用ANUSPILN 软件进行插值,分析东北多年冻土时空分布变化。结果表明,1970s、1980s、1990s、2000s和2010s的多年冻土面积分别约为3.99 × 105、3.41 × 105、2.31 × 105、1.80 × 105 、1.59 × 105 km2。1970s—2010s,东北地区的多年冻土面积显著减少约2.40 × 105 km2,降幅高达60.08%。多年冻土面积占东北地区总面积的比例从27.66%下降至11.04%,而季节性冻土面积比例则从72.34%增加至88.96%。模型结果与实际钻孔数据差值仅为0.05 °C,且使用修正地面温度数据的模型结果高于现有研究...

期刊论文 2025-06-20

NDSI(归一化差异积雪指数)是一种评估地表积雪覆盖程度的指数,对研究山区积雪变化有重要作用。本研究基于2001—2022年遥感数据和再分析数据,采用趋势分析法、多元线性回归法等,分析了近20 a来塔里木河流域山区NDSI时空变化及其归因。结果表明:塔里木河流域山区2001—2022年NDSI均呈下降趋势,具有显著的空间异质性。北部和西部山区,NDSI值的季节变化相同,NDSI平均值从高到低为:冬季>春季>秋季>夏季,而南部山区的NDSI平均值夏季高于秋季。塔里木河流域山区年均实际蒸散发均呈上升趋势。北部山区的降水呈略微下降的趋势,而西部和南部山区表现为上升趋势。所有山区的饱和水汽压差均呈上升趋势。下行地表太阳辐射呈下降趋势。北部和西部山区的最低气温呈上升趋势,南部山区略呈下降趋势,而所有区域最高气温均呈上升趋势。众多变量中,气温和饱和水汽压对NDSI的影响较大。本研究可为政策决策提供科学依据。

期刊论文 2024-09-02 DOI: 10.13866/j.azr.2024.10.03

NDSI(归一化差异积雪指数)是一种评估地表积雪覆盖程度的指数,对研究山区积雪变化有重要作用。本研究基于2001—2022年遥感数据和再分析数据,采用趋势分析法、多元线性回归法等,分析了近20 a来塔里木河流域山区NDSI时空变化及其归因。结果表明:塔里木河流域山区2001—2022年NDSI均呈下降趋势,具有显著的空间异质性。北部和西部山区,NDSI值的季节变化相同,NDSI平均值从高到低为:冬季>春季>秋季>夏季,而南部山区的NDSI平均值夏季高于秋季。塔里木河流域山区年均实际蒸散发均呈上升趋势。北部山区的降水呈略微下降的趋势,而西部和南部山区表现为上升趋势。所有山区的饱和水汽压差均呈上升趋势。下行地表太阳辐射呈下降趋势。北部和西部山区的最低气温呈上升趋势,南部山区略呈下降趋势,而所有区域最高气温均呈上升趋势。众多变量中,气温和饱和水汽压对NDSI的影响较大。本研究可为政策决策提供科学依据。

期刊论文 2024-09-02 DOI: 10.13866/j.azr.2024.10.03

NDSI(归一化差异积雪指数)是一种评估地表积雪覆盖程度的指数,对研究山区积雪变化有重要作用。本研究基于2001—2022年遥感数据和再分析数据,采用趋势分析法、多元线性回归法等,分析了近20 a来塔里木河流域山区NDSI时空变化及其归因。结果表明:塔里木河流域山区2001—2022年NDSI均呈下降趋势,具有显著的空间异质性。北部和西部山区,NDSI值的季节变化相同,NDSI平均值从高到低为:冬季>春季>秋季>夏季,而南部山区的NDSI平均值夏季高于秋季。塔里木河流域山区年均实际蒸散发均呈上升趋势。北部山区的降水呈略微下降的趋势,而西部和南部山区表现为上升趋势。所有山区的饱和水汽压差均呈上升趋势。下行地表太阳辐射呈下降趋势。北部和西部山区的最低气温呈上升趋势,南部山区略呈下降趋势,而所有区域最高气温均呈上升趋势。众多变量中,气温和饱和水汽压对NDSI的影响较大。本研究可为政策决策提供科学依据。

期刊论文 2024-09-02 DOI: 10.13866/j.azr.2024.10.03

长江源区和黄河源区地处青藏高原腹地,是全球气候变化的敏感区,其区域内不同径流组分受到气候变化的强烈影响,径流组分的变化尤其是高流量的变化可能会对流域生态和人类生产活动造成一系列的影响。为探究长江源区和黄河源区不同径流组分变化特征及其变化原因,在长江源区和黄河源区多年径流和气象数据的基础上,利用流量历时曲线Flow Duration Curve(FDC)、Mann-Kendall(M-K)法和多元线性回归等多种方法进行了相关研究。研究结果表明:(1)长江源区高流量(Q10~Q30)、中流量(Q40~Q60)和低流量(Q70~Q90)在1964-2021年期间分别以4.68、2.18和0.38 m3/(s·a)的速率增加;黄河源区高流量与总流量在1962-2021年期间变化趋势一致,分别以1.99和0.16 m3/(s·a)的速率减小,但其中流量和低流量分别以0.12和0.68 m3/(s·a)的速率增加。(2)在1979-2018年期间,降水增加是导致长江源区高流量和中流量增加的主要原因,其对高流量和中流量变化的贡献率分别为92.93%和71.17%;气温上升则是导致长江源区低流量增加的...

期刊论文 2023-06-25
  • 首页
  • 1
  • 2
  • 3
  • 末页
  • 跳转
当前展示1-10条  共26条,3页