粉尘微粒作为大气气溶胶的关键组分,对气候变化和大气环境具有重要影响。本文基于青藏高原东南部梅里雪山明永冰川区雪冰、冰川融水,以及大气降水和融水补给的明永河河水中粉尘微粒的连续观测(2022年11月—2024年1月),系统分析了不同水体中粉尘微粒的沉积特征。结果表明:(1)冰川融水径流中微粒数量浓度具有明显的季节差异,季风期显著高于非季风期。(2)在冰川强烈消融期(5—10月),明永河水的微粒数量浓度呈现出明显的昼夜差异,夜间微粒浓度高于白天。这一现象主要归因于夜间冰川消融速率下降,致使融水径流速度减缓,进而延长了河水中悬浮颗粒物的滞留时间。通过对融水径流昼夜连续观测发现,微粒浓度峰值出现在北京时间20∶00前后,这也证明了融水径流的微粒含量日变化与冰川强烈消融过程之间存在响应关系。(3)水体中细小粒径的微粒(0.57~2μm)主导着微粒的数量浓度。不同水体中微粒的体积-粒径分布均呈单峰型,微粒中值粒径较小,反映了该冰川区粉尘微粒主要源于高空远距离传输及其沉降。本研究揭示了梅里雪山冰川区雪冰和水体中粉尘微粒的沉积特征,对分析气候变暖背景下冰冻圈快速消融机制及其对区域气候变化的响应具有重要...
化学风化可消耗CO2,在地质时间尺度上调控碳循环和全球气候变化。随着全球气候变暖、冰川融化加剧,冰川流域的化学风化速率可能发生改变,其对碳循环的影响尚不明确。本文选择位于青藏高原东南缘的梅里雪山明永冰川流域作为研究区,开展为期两年(2018年10月至2020年10月)的河水水文指标监测和逐日采样,采集731个河水样品,探讨明永冰川流域河水的水化学特征,量化流域内岩石化学风化速率和碳汇/碳源速率。结果表明,明永冰川流域河水的水化学类型为HCO3-Ca型,硫酸参与碳酸盐风化对河水成分的影响最大(62.1%),碳酸参与碳酸盐岩风化、硅酸盐岩风化和大气输入的贡献分别为32.4%、4.5%和1.0%。硅酸盐岩风化消耗大气CO2通量的平均值为0.31×10~3 mol·km-2·a-1,硫酸参与碳酸盐岩风化向大气释放CO2通量的平均值为4.00×10~3 mol·km-2·a-1。可见,研究区化学风化释放CO2
化学风化可消耗CO2,在地质时间尺度上调控碳循环和全球气候变化。随着全球气候变暖、冰川融化加剧,冰川流域的化学风化速率可能发生改变,其对碳循环的影响尚不明确。本文选择位于青藏高原东南缘的梅里雪山明永冰川流域作为研究区,开展为期两年(2018年10月至2020年10月)的河水水文指标监测和逐日采样,采集731个河水样品,探讨明永冰川流域河水的水化学特征,量化流域内岩石化学风化速率和碳汇/碳源速率。结果表明,明永冰川流域河水的水化学类型为HCO3-Ca型,硫酸参与碳酸盐风化对河水成分的影响最大(62.1%),碳酸参与碳酸盐岩风化、硅酸盐岩风化和大气输入的贡献分别为32.4%、4.5%和1.0%。硅酸盐岩风化消耗大气CO2通量的平均值为0.31×10~3 mol·km-2·a-1,硫酸参与碳酸盐岩风化向大气释放CO2通量的平均值为4.00×10~3 mol·km-2·a-1。可见,研究区化学风化释放CO2
化学风化可消耗CO2,在地质时间尺度上调控碳循环和全球气候变化。随着全球气候变暖、冰川融化加剧,冰川流域的化学风化速率可能发生改变,其对碳循环的影响尚不明确。本文选择位于青藏高原东南缘的梅里雪山明永冰川流域作为研究区,开展为期两年(2018年10月至2020年10月)的河水水文指标监测和逐日采样,采集731个河水样品,探讨明永冰川流域河水的水化学特征,量化流域内岩石化学风化速率和碳汇/碳源速率。结果表明,明永冰川流域河水的水化学类型为HCO3-Ca型,硫酸参与碳酸盐风化对河水成分的影响最大(62.1%),碳酸参与碳酸盐岩风化、硅酸盐岩风化和大气输入的贡献分别为32.4%、4.5%和1.0%。硅酸盐岩风化消耗大气CO2通量的平均值为0.31×10~3 mol·km-2·a-1,硫酸参与碳酸盐岩风化向大气释放CO2通量的平均值为4.00×10~3 mol·km-2·a-1。可见,研究区化学风化释放CO2
化学风化可消耗CO2,在地质时间尺度上调控碳循环和全球气候变化。随着全球气候变暖、冰川融化加剧,冰川流域的化学风化速率可能发生改变,其对碳循环的影响尚不明确。本文选择位于青藏高原东南缘的梅里雪山明永冰川流域作为研究区,开展为期两年(2018年10月至2020年10月)的河水水文指标监测和逐日采样,采集731个河水样品,探讨明永冰川流域河水的水化学特征,量化流域内岩石化学风化速率和碳汇/碳源速率。结果表明,明永冰川流域河水的水化学类型为HCO3-Ca型,硫酸参与碳酸盐风化对河水成分的影响最大(62.1%),碳酸参与碳酸盐岩风化、硅酸盐岩风化和大气输入的贡献分别为32.4%、4.5%和1.0%。硅酸盐岩风化消耗大气CO2通量的平均值为0.31×10~3 mol·km-2·a-1,硫酸参与碳酸盐岩风化向大气释放CO2通量的平均值为4.00×10~3 mol·km-2·a-1。可见,研究区化学风化释放CO2
化学风化可消耗CO2,在地质时间尺度上调控碳循环和全球气候变化。随着全球气候变暖、冰川融化加剧,冰川流域的化学风化速率可能发生改变,其对碳循环的影响尚不明确。本文选择位于青藏高原东南缘的梅里雪山明永冰川流域作为研究区,开展为期两年(2018年10月至2020年10月)的河水水文指标监测和逐日采样,采集731个河水样品,探讨明永冰川流域河水的水化学特征,量化流域内岩石化学风化速率和碳汇/碳源速率。结果表明,明永冰川流域河水的水化学类型为HCO3-Ca型,硫酸参与碳酸盐风化对河水成分的影响最大(62.1%),碳酸参与碳酸盐岩风化、硅酸盐岩风化和大气输入的贡献率分别为32.4%、4.5%和1.0%。硅酸盐岩风化消耗大气CO2通量的平均值为0.31×10~3 mol·km-2·a-1,硫酸参与碳酸盐岩风化向大气释放CO2通量的平均值为4.00×10~3 mol·km-2·a-1。可见,研究区化学风化释放CO2<...
化学风化可消耗CO2,在地质时间尺度上调控碳循环和全球气候变化。随着全球气候变暖、冰川融化加剧,冰川流域的化学风化速率可能发生改变,其对碳循环的影响尚不明确。本文选择位于青藏高原东南缘的梅里雪山明永冰川流域作为研究区,开展为期两年(2018年10月至2020年10月)的河水水文指标监测和逐日采样,采集731个河水样品,探讨明永冰川流域河水的水化学特征,量化流域内岩石化学风化速率和碳汇/碳源速率。结果表明,明永冰川流域河水的水化学类型为HCO3-Ca型,硫酸参与碳酸盐风化对河水成分的影响最大(62.1%),碳酸参与碳酸盐岩风化、硅酸盐岩风化和大气输入的贡献分别为32.4%、4.5%和1.0%。硅酸盐岩风化消耗大气CO2通量的平均值为0.31×10~3 mol·km-2·a-1,硫酸参与碳酸盐岩风化向大气释放CO2通量的平均值为4.00×10~3 mol·km-2·a-1。可见,研究区化学风化释放CO2
延时摄影因可靠、高效和低成本的优势,在冰川监测中应用广泛,特别是对于获取冰川表面连续变化信息而言。本文基于2020年3月—2021年9月物候相机拍摄的梅里雪山明永冰川末端照片及多期无人机影像,利用地面摄影测量技术和互相关算法,提取了日尺度冰川表面运动速度。结果表明:通过物候图像获取的冰川表面运动速度分辨率高,从海拔2 880~3 150 m a. s. l.,冰川总位移介于(129.38±7.76)~(669.95±247.88) m,年均表面运动速度达(79.14±4.74)~(412.86±152.75) m·a-1,呈从中间向两侧减缓的空间分布特征。冰川表面运动速度随季节变化,夏季流速[(0.13±0.06)~(1.99±0.37) m·d-1]快于冬季流速[(0.07±0.06)~(1.35±0.37) m·d-1]。与冬季流速相比,夏季流速受降水和气温升高的影响不稳定。根据流速分离结果,明永冰川末端底部全年处于融化或压融状态,底部滑动对冰川表面运动速度的贡献介于76%~93%。冬季底部滑动占表面流速高达82%,...
延时摄影因可靠、高效和低成本的优势,在冰川监测中应用广泛,特别是对于获取冰川表面连续变化信息而言。本文基于2020年3月—2021年9月物候相机拍摄的梅里雪山明永冰川末端照片及多期无人机影像,利用地面摄影测量技术和互相关算法,提取了日尺度冰川表面运动速度。结果表明:通过物候图像获取的冰川表面运动速度分辨率高,从海拔2 880~3 150 m a. s. l.,冰川总位移介于(129.38±7.76)~(669.95±247.88) m,年均表面运动速度达(79.14±4.74)~(412.86±152.75) m·a-1,呈从中间向两侧减缓的空间分布特征。冰川表面运动速度随季节变化,夏季流速[(0.13±0.06)~(1.99±0.37) m·d-1]快于冬季流速[(0.07±0.06)~(1.35±0.37) m·d-1]。与冬季流速相比,夏季流速受降水和气温升高的影响不稳定。根据流速分离结果,明永冰川末端底部全年处于融化或压融状态,底部滑动对冰川表面运动速度的贡献介于76%~93%。冬季底部滑动占表面流速高达82%,...
延时摄影因可靠、高效和低成本的优势,在冰川监测中应用广泛,特别是对于获取冰川表面连续变化信息而言。本文基于2020年3月—2021年9月物候相机拍摄的梅里雪山明永冰川末端照片及多期无人机影像,利用地面摄影测量技术和互相关算法,提取了日尺度冰川表面运动速度。结果表明:通过物候图像获取的冰川表面运动速度分辨率高,从海拔2 880~3 150 m a. s. l.,冰川总位移介于(129.38±7.76)~(669.95±247.88) m,年均表面运动速度达(79.14±4.74)~(412.86±152.75) m·a-1,呈从中间向两侧减缓的空间分布特征。冰川表面运动速度随季节变化,夏季流速[(0.13±0.06)~(1.99±0.37) m·d-1]快于冬季流速[(0.07±0.06)~(1.35±0.37) m·d-1]。与冬季流速相比,夏季流速受降水和气温升高的影响不稳定。根据流速分离结果,明永冰川末端底部全年处于融化或压融状态,底部滑动对冰川表面运动速度的贡献介于76%~93%。冬季底部滑动占表面流速高达82%,...