为了探究高原寒区高速公路路堤岩石红砂岩、青砂岩、花岗岩3种块石填料的物理性质受冻融循环作用的影响,本文在高原寒区高速公路现场采集3种新鲜块石填料,对块石填料抽真空饱和后进行冻融循环试验,共进行50次冻融循环,观察、测试3种块石的表观、质量和波速等物理性质指标。结果表明:随着冻融循环次数的增加,岩样表观发生剥落、裂纹2种破坏模式;块石试件的质量和波速出现不同程度的减小,岩样表观裂纹不断扩展,内部孔隙不断增大,加快了岩石的损伤破坏。该结果可为高原寒区岩土工程的建设提供相应的数据参考。
为了探究高原寒区高速公路路堤岩石红砂岩、青砂岩、花岗岩3种块石填料的物理性质受冻融循环作用的影响,本文在高原寒区高速公路现场采集3种新鲜块石填料,对块石填料抽真空饱和后进行冻融循环试验,共进行50次冻融循环,观察、测试3种块石的表观、质量和波速等物理性质指标。结果表明:随着冻融循环次数的增加,岩样表观发生剥落、裂纹2种破坏模式;块石试件的质量和波速出现不同程度的减小,岩样表观裂纹不断扩展,内部孔隙不断增大,加快了岩石的损伤破坏。该结果可为高原寒区岩土工程的建设提供相应的数据参考。
为了探究高原寒区高速公路路堤岩石红砂岩、青砂岩、花岗岩3种块石填料的物理性质受冻融循环作用的影响,本文在高原寒区高速公路现场采集3种新鲜块石填料,对块石填料抽真空饱和后进行冻融循环试验,共进行50次冻融循环,观察、测试3种块石的表观、质量和波速等物理性质指标。结果表明:随着冻融循环次数的增加,岩样表观发生剥落、裂纹2种破坏模式;块石试件的质量和波速出现不同程度的减小,岩样表观裂纹不断扩展,内部孔隙不断增大,加快了岩石的损伤破坏。该结果可为高原寒区岩土工程的建设提供相应的数据参考。
研究深土冻融过程的声波响应特性,对于声波技术应用于深厚表土层人工冻结工程有重要意义。深土原位冻融始终处于高地应力环境下,但目前声波测试装置尚不具备高压冻融条件下的测试功能。为此本文结合弯曲元测试技术,研制了侧装式弯曲元高压冻融试验装置,以了解高应力条件下深土冻融过程的剪切波速。该试验装置主要由试样承压舱、加载系统、控温系统、数据采集系统和弯曲元测试系统构成。系统核心单元——试样承压舱采用双层筒结构,内筒为聚四氟乙烯筒,外筒为钢筒,弯曲元探头设置于内层筒侧壁。通过数值计算确定内筒壁厚8mm,外筒壁厚15mm,该结构可满足高应力下承压舱的抗变形、隔热和隔振要求。利用弯曲元测试系统研究了声波走时确定方法,以及激励波形和频率等测试参数。根据测试结果,本试验条件下声波走时采用初达波法确定,激励波形采用方波,高密度冻土和未冻土的激励频率分别选择4kHz和5kHz。最后,利用该装置测试了有载条件下深部黏土不同负温下的剪切波速,初步验证了装置的适用性。
研究深土冻融过程的声波响应特性,对于声波技术应用于深厚表土层人工冻结工程有重要意义。深土原位冻融始终处于高地应力环境下,但目前声波测试装置尚不具备高压冻融条件下的测试功能。为此本文结合弯曲元测试技术,研制了侧装式弯曲元高压冻融试验装置,以了解高应力条件下深土冻融过程的剪切波速。该试验装置主要由试样承压舱、加载系统、控温系统、数据采集系统和弯曲元测试系统构成。系统核心单元——试样承压舱采用双层筒结构,内筒为聚四氟乙烯筒,外筒为钢筒,弯曲元探头设置于内层筒侧壁。通过数值计算确定内筒壁厚8mm,外筒壁厚15mm,该结构可满足高应力下承压舱的抗变形、隔热和隔振要求。利用弯曲元测试系统研究了声波走时确定方法,以及激励波形和频率等测试参数。根据测试结果,本试验条件下声波走时采用初达波法确定,激励波形采用方波,高密度冻土和未冻土的激励频率分别选择4kHz和5kHz。最后,利用该装置测试了有载条件下深部黏土不同负温下的剪切波速,初步验证了装置的适用性。
研究深土冻融过程的声波响应特性,对于声波技术应用于深厚表土层人工冻结工程有重要意义。深土原位冻融始终处于高地应力环境下,但目前声波测试装置尚不具备高压冻融条件下的测试功能。为此本文结合弯曲元测试技术,研制了侧装式弯曲元高压冻融试验装置,以了解高应力条件下深土冻融过程的剪切波速。该试验装置主要由试样承压舱、加载系统、控温系统、数据采集系统和弯曲元测试系统构成。系统核心单元——试样承压舱采用双层筒结构,内筒为聚四氟乙烯筒,外筒为钢筒,弯曲元探头设置于内层筒侧壁。通过数值计算确定内筒壁厚8mm,外筒壁厚15mm,该结构可满足高应力下承压舱的抗变形、隔热和隔振要求。利用弯曲元测试系统研究了声波走时确定方法,以及激励波形和频率等测试参数。根据测试结果,本试验条件下声波走时采用初达波法确定,激励波形采用方波,高密度冻土和未冻土的激励频率分别选择4kHz和5kHz。最后,利用该装置测试了有载条件下深部黏土不同负温下的剪切波速,初步验证了装置的适用性。
在分析青藏铁路沿线多年冻土区土层波速基本特征的基础上,结合室内动三轴有关冻土动力学特性的试验结果,使用该地区50年不同超越概率的人造基岩地震波作为输入地震荷载,对青藏高原多年冻土区地震动特征进行分析。冻土区地震反应计算考虑了气候变化和工程活动引起多年冻土温度升高、活动层厚度增大的背景,获得了不同活动层厚度条件下冻土场地的放大效应及冻土区反应谱特征周期变化情况。在此基础上,选取多年冻土区典型填土路基结构,运用非线性动力有限元方法,进行地震荷载作用下的动力响应分析,量化非线性有限元计算和一维地震动力计算结果的差异,以及不同剖面位置加速度峰值分布特征。研究结果表明:地表峰值加速度放大倍数随着活动层厚度的增加而增加,而且活动层处于融化状态下的加速度放大倍数要大于冻结状态。活动层处于融化状态下,场地特征周期较冻结状态下稍大。并且场地特征周期随活动层厚度的增加而出现增长趋势。冻结状态下场地特征周期为0.32s,而融化状态下场地特征周期最大可以达到0.38s。研究还发现,由于路基本体的构筑,使得地震荷载作用下能量在路基下伏土体内出现集中,路基下方土体在同样的地震荷载作用下更容易进入塑性破坏状态。
针对祁连山冻土区DK-4井孔含水合物岩层构建岩石物理模型,分别采用K-T方程模型方法和区分填充模式的等效介质模型方法(模式Ⅰ和模式Ⅱ)。K-T方程主要模拟地震波在两相介质中传播,基于弹性模量计算速度;而等效介质模型主要依据对水合物地层介质的两种假设:模式Ⅰ是将水合物作为孔隙填充物的一部分,模式Ⅱ是将水合物作为岩石骨架的一部分。首先根据粉砂岩层段的测井数据提取了水合物地层骨架的物性参数,包括纵波速度、横波速度、密度、体积模量和剪切模量。然后依据水合物地层各主要成分的物性参数,建立了基于K-T方程的岩石物理模型和区分填充模式的等效介质模型。将两类模型的速度曲线分别与实际地层数据进行了对比:由K-T方程建立的岩石物理模型,其理论计算的速度偏离实际值;而区分填充模式的等效介质模型,其理论计算的速度符合实际值,并且填充模式Ⅱ模型的速度曲线比填充模式Ⅰ模型更接近实际地层情况。采用区分填充模式的等效介质模型,能够更好地实现对祁连山冻土区水合物粉砂岩地层的模拟。
通过对前人的试验成果进行整理,得到冻土动力学参数随温度、频率、应变幅、含水量和围压等因素的整体变化规律.整体上看,冻土的动弹性模量和动剪切模量随温度的降低而增大、随荷载振动频率的增加而增大、随动应变幅的增加而减小、随含水量的增加先增大后减小、随围压的增加而增大;冻土的泊松比随温度的降低而增大;冻土的阻尼比随温度的降低而减小,随频率、应变幅、含水量、围压的变化规律性不强.通过对试验条件和数值模拟时的实际工况对比分析,给出如下建议:动弹性模量和动剪切模量的预估适合用两段式线性模型,-5℃可以作为两段式的分界点;列车荷载作用下冻土的动力响应属于小应变幅的振动,冻土动力学参数应选择波速法的试验结果.
冻土可钻性分级指标及分级研究是目前冻土学术界及冻土工程领域研究的重点课题,冻土波速和强度指标下的冻土可钻性分级研究是该课题研究的重要和关键内容。课题组通过对7 a的试验研究数据进行分析,结果表明,对于以冻土波速、压入硬度、抗压强度、抗拉强度为指标分级时,有如下规律:含水率在13%~25%且一定时,-20℃是可钻性的拐点温度;温度在-1~24℃且一定时,含水率在13%~19%区间,冻土可钻性随含水率的增大而降低。温度在-1℃~24℃且一定时,含水率在20%~25%区间,冻土可钻性随含水率的增大而增强。冻土可钻性一般可分为4级,可钻性一级的冻土表现为较强的塑性;可钻性二级的冻土为塑性向脆性过渡阶段的冻土,冻土温度在-20℃以上时,冻土的塑性较强、脆性较弱,冻土温度为-20℃以下的冻土脆性明显增强;可钻性为三级~四级的冻土表现为较强的脆性。