青藏高原东北缘是我国最重要的生态功能区和淡水补给区,研究其不同时间尺度气候变化过程及机理可以为区域环境演变评估提供参考依据和科学支撑。通过系统分析气象观测、气候模拟和古气候记录数据,回顾青藏高原东北缘现代尺度与全新世千年尺度的气候变化特征,总结不同时间尺度上气候变化的影响因素,重点归纳热带海洋对青藏高原东北缘气候变化的影响机制。研究表明:青藏高原东北缘在现代尺度上呈现明显的暖湿化趋势,干湿变化主要受海洋活动、北极海冰和高原积雪的影响。全新世早期和中期青藏高原东北缘气候较为湿润,晚全新世以干旱为主要特征,千年尺度上干湿变化受控于低纬度太阳辐射和热带太平洋的海洋表面温度(sea surface temperature,SST)。热带海洋对该区域干湿变化的影响程度在不同时间尺度均较大,而其他因素存在时间尺度效应。随着未来全球气候变化的加剧,海洋活动充满不确定性,将会加剧区域生态安全风险。
青藏高原东北缘是我国最重要的生态功能区和淡水补给区,研究其不同时间尺度气候变化过程及机理可以为区域环境演变评估提供参考依据和科学支撑。通过系统分析气象观测、气候模拟和古气候记录数据,回顾青藏高原东北缘现代尺度与全新世千年尺度的气候变化特征,总结不同时间尺度上气候变化的影响因素,重点归纳热带海洋对青藏高原东北缘气候变化的影响机制。研究表明:青藏高原东北缘在现代尺度上呈现明显的暖湿化趋势,干湿变化主要受海洋活动、北极海冰和高原积雪的影响。全新世早期和中期青藏高原东北缘气候较为湿润,晚全新世以干旱为主要特征,千年尺度上干湿变化受控于低纬度太阳辐射和热带太平洋的海洋表面温度(sea surface temperature,SST)。热带海洋对该区域干湿变化的影响程度在不同时间尺度均较大,而其他因素存在时间尺度效应。随着未来全球气候变化的加剧,海洋活动充满不确定性,将会加剧区域生态安全风险。
青藏高原东北缘是我国最重要的生态功能区和淡水补给区,研究其不同时间尺度气候变化过程及机理可以为区域环境演变评估提供参考依据和科学支撑。通过系统分析气象观测、气候模拟和古气候记录数据,回顾青藏高原东北缘现代尺度与全新世千年尺度的气候变化特征,总结不同时间尺度上气候变化的影响因素,重点归纳热带海洋对青藏高原东北缘气候变化的影响机制。研究表明:青藏高原东北缘在现代尺度上呈现明显的暖湿化趋势,干湿变化主要受海洋活动、北极海冰和高原积雪的影响。全新世早期和中期青藏高原东北缘气候较为湿润,晚全新世以干旱为主要特征,千年尺度上干湿变化受控于低纬度太阳辐射和热带太平洋的海洋表面温度(sea surface temperature,SST)。热带海洋对该区域干湿变化的影响程度在不同时间尺度均较大,而其他因素存在时间尺度效应。随着未来全球气候变化的加剧,海洋活动充满不确定性,将会加剧区域生态安全风险。
青藏高原东北缘是我国最重要的生态功能区和淡水补给区,研究其不同时间尺度气候变化过程及机理可以为区域环境演变评估提供参考依据和科学支撑。通过系统分析气象观测、气候模拟和古气候记录数据,回顾青藏高原东北缘现代尺度与全新世千年尺度的气候变化特征,总结不同时间尺度上气候变化的影响因素,重点归纳热带海洋对青藏高原东北缘气候变化的影响机制。研究表明:青藏高原东北缘在现代尺度上呈现明显的暖湿化趋势,干湿变化主要受海洋活动、北极海冰和高原积雪的影响。全新世早期和中期青藏高原东北缘气候较为湿润,晚全新世以干旱为主要特征,千年尺度上干湿变化受控于低纬度太阳辐射和热带太平洋的海洋表面温度(sea surface temperature,SST)。热带海洋对该区域干湿变化的影响程度在不同时间尺度均较大,而其他因素存在时间尺度效应。随着未来全球气候变化的加剧,海洋活动充满不确定性,将会加剧区域生态安全风险。
青藏高原东北缘是我国最重要的生态功能区和淡水补给区,研究其不同时间尺度气候变化过程及机理可以为区域环境演变评估提供参考依据和科学支撑。通过系统分析气象观测、气候模拟和古气候记录数据,回顾青藏高原东北缘现代尺度与全新世千年尺度的气候变化特征,总结不同时间尺度上气候变化的影响因素,重点归纳热带海洋对青藏高原东北缘气候变化的影响机制。研究表明:青藏高原东北缘在现代尺度上呈现明显的暖湿化趋势,干湿变化主要受海洋活动、北极海冰和高原积雪的影响。全新世早期和中期青藏高原东北缘气候较为湿润,晚全新世以干旱为主要特征,千年尺度上干湿变化受控于低纬度太阳辐射和热带太平洋的海洋表面温度(sea surface temperature,SST)。热带海洋对该区域干湿变化的影响程度在不同时间尺度均较大,而其他因素存在时间尺度效应。随着未来全球气候变化的加剧,海洋活动充满不确定性,将会加剧区域生态安全风险。
末次冰期的两类北大西洋千年尺度气候突变现象Dansgaard-Oeschger Oscillation(DO振荡)和海因里希事件(HS)在全球多处重建记录中均有体现,然而其触发机制及为何集中于海洋氧同位素第3阶段(MIS 3)发生仍处在探索阶段。本研究利用全球耦合模式,模拟并分析了MIS 3背景场下冰盖变化对全球气候的影响及其与千年尺度气候突变事件的联系。结果表明:1)DO/HS间冰阶期间,高海拔冰盖使行星波振幅增大,大气向极区输送热量增加,北极变暖,北大西洋海冰面积减少,但格陵兰岛存在阻塞高压,使DO/HS间冰阶期间温度偏低。冰盖条件显著影响了北半球冬季大气环流形态且与DO/HS的发生有紧密的联系。MIS 3阶段冰盖较末次冰盛期(LGM)而言,更利于千年尺度气候振荡的形成。2)高冰盖情境下格陵兰岛有一定阻塞高压且地表气温降低,北大西洋副极地涡旋由于海洋表面风应力增加而加强,向北热量输送也相应增加。3)加入淡水强迫之后,大西洋经向翻转环流(AMOC)强度减弱,北大西洋海表温度降低,海冰增加,进入冰阶状态。此时,增强的大气向北热量输送削弱了由于AMOC减弱造成的降温,不利于格陵兰岛冰阶状...
末次冰期的两类北大西洋千年尺度气候突变现象Dansgaard-Oeschger Oscillation(DO振荡)和海因里希事件(HS)在全球多处重建记录中均有体现,然而其触发机制及为何集中于海洋氧同位素第3阶段(MIS 3)发生仍处在探索阶段。本研究利用全球耦合模式,模拟并分析了MIS 3背景场下冰盖变化对全球气候的影响及其与千年尺度气候突变事件的联系。结果表明:1)DO/HS间冰阶期间,高海拔冰盖使行星波振幅增大,大气向极区输送热量增加,北极变暖,北大西洋海冰面积减少,但格陵兰岛存在阻塞高压,使DO/HS间冰阶期间温度偏低。冰盖条件显著影响了北半球冬季大气环流形态且与DO/HS的发生有紧密的联系。MIS 3阶段冰盖较末次冰盛期(LGM)而言,更利于千年尺度气候振荡的形成。2)高冰盖情境下格陵兰岛有一定阻塞高压且地表气温降低,北大西洋副极地涡旋由于海洋表面风应力增加而加强,向北热量输送也相应增加。3)加入淡水强迫之后,大西洋经向翻转环流(AMOC)强度减弱,北大西洋海表温度降低,海冰增加,进入冰阶状态。此时,增强的大气向北热量输送削弱了由于AMOC减弱造成的降温,不利于格陵兰岛冰阶状...
末次冰期的两类北大西洋千年尺度气候突变现象Dansgaard-Oeschger Oscillation(DO振荡)和海因里希事件(HS)在全球多处重建记录中均有体现,然而其触发机制及为何集中于海洋氧同位素第3阶段(MIS 3)发生仍处在探索阶段。本研究利用全球耦合模式,模拟并分析了MIS 3背景场下冰盖变化对全球气候的影响及其与千年尺度气候突变事件的联系。结果表明:1)DO/HS间冰阶期间,高海拔冰盖使行星波振幅增大,大气向极区输送热量增加,北极变暖,北大西洋海冰面积减少,但格陵兰岛存在阻塞高压,使DO/HS间冰阶期间温度偏低。冰盖条件显著影响了北半球冬季大气环流形态且与DO/HS的发生有紧密的联系。MIS 3阶段冰盖较末次冰盛期(LGM)而言,更利于千年尺度气候振荡的形成。2)高冰盖情境下格陵兰岛有一定阻塞高压且地表气温降低,北大西洋副极地涡旋由于海洋表面风应力增加而加强,向北热量输送也相应增加。3)加入淡水强迫之后,大西洋经向翻转环流(AMOC)强度减弱,北大西洋海表温度降低,海冰增加,进入冰阶状态。此时,增强的大气向北热量输送削弱了由于AMOC减弱造成的降温,不利于格陵兰岛冰阶状...
末次冰期的两类北大西洋千年尺度气候突变现象Dansgaard-Oeschger Oscillation(DO振荡)和海因里希事件(HS)在全球多处重建记录中均有体现,然而其触发机制及为何集中于海洋氧同位素第3阶段(MIS 3)发生仍处在探索阶段。本研究利用全球耦合模式,模拟并分析了MIS 3背景场下冰盖变化对全球气候的影响及其与千年尺度气候突变事件的联系。结果表明:1)DO/HS间冰阶期间,高海拔冰盖使行星波振幅增大,大气向极区输送热量增加,北极变暖,北大西洋海冰面积减少,但格陵兰岛存在阻塞高压,使DO/HS间冰阶期间温度偏低。冰盖条件显著影响了北半球冬季大气环流形态且与DO/HS的发生有紧密的联系。MIS 3阶段冰盖较末次冰盛期(LGM)而言,更利于千年尺度气候振荡的形成。2)高冰盖情境下格陵兰岛有一定阻塞高压且地表气温降低,北大西洋副极地涡旋由于海洋表面风应力增加而加强,向北热量输送也相应增加。3)加入淡水强迫之后,大西洋经向翻转环流(AMOC)强度减弱,北大西洋海表温度降低,海冰增加,进入冰阶状态。此时,增强的大气向北热量输送削弱了由于AMOC减弱造成的降温,不利于格陵兰岛冰阶状...
末次冰期的两类北大西洋千年尺度气候突变现象Dansgaard-Oeschger Oscillation(DO振荡)和海因里希事件(HS)在全球多处重建记录中均有体现,然而其触发机制及为何集中于海洋氧同位素第3阶段(MIS 3)发生仍处在探索阶段。本研究利用全球耦合模式,模拟并分析了MIS 3背景场下冰盖变化对全球气候的影响及其与千年尺度气候突变事件的联系。结果表明:1)DO/HS间冰阶期间,高海拔冰盖使行星波振幅增大,大气向极区输送热量增加,北极变暖,北大西洋海冰面积减少,但格陵兰岛存在阻塞高压,使DO/HS间冰阶期间温度偏低。冰盖条件显著影响了北半球冬季大气环流形态且与DO/HS的发生有紧密的联系。MIS 3阶段冰盖较末次冰盛期(LGM)而言,更利于千年尺度气候振荡的形成。2)高冰盖情境下格陵兰岛有一定阻塞高压且地表气温降低,北大西洋副极地涡旋由于海洋表面风应力增加而加强,向北热量输送也相应增加。3)加入淡水强迫之后,大西洋经向翻转环流(AMOC)强度减弱,北大西洋海表温度降低,海冰增加,进入冰阶状态。此时,增强的大气向北热量输送削弱了由于AMOC减弱造成的降温,不利于格陵兰岛冰阶状...