随着大跨空间结构的发展,拱形屋面在实际工程中得到了多方面的应用。然而在暴雪天气,大跨结构倒塌事故频发,屋面失稳坍塌通常为屋面不均匀积雪分布所致。一些学者主要对高低屋面、双坡屋面等平屋面建筑上积雪分布进行了研究,目前针对拱形屋面上积雪分布的研究较少。本文通过考虑降雪影响对不同矢跨比拱形屋面模型积雪分布进行了风洞试验。当矢跨比1/10时,屋盖表面雪压大致在0.32 kN/m2~0.4 kN/m2之间;矢跨比1/10时,屋盖表面雪压大致在0.22 kN/m2~0.36 kN/m2之间。同时,采用数值模拟对不同矢跨比及不同跨数拱形屋面积雪分布情况进行了研究分析。发现在中间跨的雪粒堆积最显著,第二跨拱形屋盖表面的雪压大致在0.35 kN/m2~0.4 kN/m2之间,明显大于第一跨和第三跨0.32 kN/m2~0.35 kN/m2之间的雪压,在实际工程中应加强中间跨的抗雪设计。通过对比试验与数值模拟的结果,验证了该数值方法...
随着大跨空间结构的发展,拱形屋面在实际工程中得到了多方面的应用。然而在暴雪天气,大跨结构倒塌事故频发,屋面失稳坍塌通常为屋面不均匀积雪分布所致。一些学者主要对高低屋面、双坡屋面等平屋面建筑上积雪分布进行了研究,目前针对拱形屋面上积雪分布的研究较少。本文通过考虑降雪影响对不同矢跨比拱形屋面模型积雪分布进行了风洞试验。当矢跨比1/10时,屋盖表面雪压大致在0.32 kN/m2~0.4 kN/m2之间;矢跨比1/10时,屋盖表面雪压大致在0.22 kN/m2~0.36 kN/m2之间。同时,采用数值模拟对不同矢跨比及不同跨数拱形屋面积雪分布情况进行了研究分析。发现在中间跨的雪粒堆积最显著,第二跨拱形屋盖表面的雪压大致在0.35 kN/m2~0.4 kN/m2之间,明显大于第一跨和第三跨0.32 kN/m2~0.35 kN/m2之间的雪压,在实际工程中应加强中间跨的抗雪设计。通过对比试验与数值模拟的结果,验证了该数值方法...
随着大跨空间结构的发展,拱形屋面在实际工程中得到了多方面的应用。然而在暴雪天气,大跨结构倒塌事故频发,屋面失稳坍塌通常为屋面不均匀积雪分布所致。一些学者主要对高低屋面、双坡屋面等平屋面建筑上积雪分布进行了研究,目前针对拱形屋面上积雪分布的研究较少。本文通过考虑降雪影响对不同矢跨比拱形屋面模型积雪分布进行了风洞试验。当矢跨比1/10时,屋盖表面雪压大致在0.32 kN/m2~0.4 kN/m2之间;矢跨比1/10时,屋盖表面雪压大致在0.22 kN/m2~0.36 kN/m2之间。同时,采用数值模拟对不同矢跨比及不同跨数拱形屋面积雪分布情况进行了研究分析。发现在中间跨的雪粒堆积最显著,第二跨拱形屋盖表面的雪压大致在0.35 kN/m2~0.4 kN/m2之间,明显大于第一跨和第三跨0.32 kN/m2~0.35 kN/m2之间的雪压,在实际工程中应加强中间跨的抗雪设计。通过对比试验与数值模拟的结果,验证了该数值方法...
风致积雪导致建筑屋盖压塌的现象屡见不鲜,研究典型屋盖积雪分布形式具有重要意义。本文运用ANSYS Fluent 计算流体力学软件二次开发功能和UDF编程实现风吹雪数值模拟,并通过对二维平屋面及三维弧形落地网壳的积雪模拟验证了模型的准确性。综合考虑不同风速、风向角及矢跨比对单跨拱形屋盖积雪分布的影响,结果显示建筑高度处风速为5m/s时,0°风向角下屋面局部范围积雪分布系数超出规范限值,90°风向角下屋面大部分范围积雪分布系数超出规范限值。研究了干扰建筑对拱形屋盖积雪分布的影响,其导致拱形屋盖迎风面一定范围内积雪分布系数超出我国规范限值;当干扰建筑间距不小于2.5倍干扰建筑高度时,干扰效应的影响很小,可忽略其影响。
风致积雪导致建筑屋盖压塌的现象屡见不鲜,研究典型屋盖积雪分布形式具有重要意义。本文运用ANSYS Fluent 计算流体力学软件二次开发功能和UDF编程实现风吹雪数值模拟,并通过对二维平屋面及三维弧形落地网壳的积雪模拟验证了模型的准确性。综合考虑不同风速、风向角及矢跨比对单跨拱形屋盖积雪分布的影响,结果显示建筑高度处风速为5m/s时,0°风向角下屋面局部范围积雪分布系数超出规范限值,90°风向角下屋面大部分范围积雪分布系数超出规范限值。研究了干扰建筑对拱形屋盖积雪分布的影响,其导致拱形屋盖迎风面一定范围内积雪分布系数超出我国规范限值;当干扰建筑间距不小于2.5倍干扰建筑高度时,干扰效应的影响很小,可忽略其影响。
风致积雪导致建筑屋盖压塌的现象屡见不鲜,研究典型屋盖积雪分布形式具有重要意义。本文运用ANSYS Fluent 计算流体力学软件二次开发功能和UDF编程实现风吹雪数值模拟,并通过对二维平屋面及三维弧形落地网壳的积雪模拟验证了模型的准确性。综合考虑不同风速、风向角及矢跨比对单跨拱形屋盖积雪分布的影响,结果显示建筑高度处风速为5m/s时,0°风向角下屋面局部范围积雪分布系数超出规范限值,90°风向角下屋面大部分范围积雪分布系数超出规范限值。研究了干扰建筑对拱形屋盖积雪分布的影响,其导致拱形屋盖迎风面一定范围内积雪分布系数超出我国规范限值;当干扰建筑间距不小于2.5倍干扰建筑高度时,干扰效应的影响很小,可忽略其影响。
风致积雪导致建筑屋盖压塌的现象屡见不鲜,研究典型屋盖积雪分布形式具有重要意义。本文运用ANSYS Fluent 计算流体力学软件二次开发功能和UDF编程实现风吹雪数值模拟,并通过对二维平屋面及三维弧形落地网壳的积雪模拟验证了模型的准确性。综合考虑不同风速、风向角及矢跨比对单跨拱形屋盖积雪分布的影响,结果显示建筑高度处风速为5m/s时,0°风向角下屋面局部范围积雪分布系数超出规范限值,90°风向角下屋面大部分范围积雪分布系数超出规范限值。研究了干扰建筑对拱形屋盖积雪分布的影响,其导致拱形屋盖迎风面一定范围内积雪分布系数超出我国规范限值;当干扰建筑间距不小于2.5倍干扰建筑高度时,干扰效应的影响很小,可忽略其影响。
风致积雪导致建筑屋盖压塌的现象屡见不鲜,研究典型屋盖积雪分布形式具有重要意义。本文运用ANSYS Fluent 计算流体力学软件二次开发功能和UDF编程实现风吹雪数值模拟,并通过对二维平屋面及三维弧形落地网壳的积雪模拟验证了模型的准确性。综合考虑不同风速、风向角及矢跨比对单跨拱形屋盖积雪分布的影响,结果显示建筑高度处风速为5m/s时,0°风向角下屋面局部范围积雪分布系数超出规范限值,90°风向角下屋面大部分范围积雪分布系数超出规范限值。研究了干扰建筑对拱形屋盖积雪分布的影响,其导致拱形屋盖迎风面一定范围内积雪分布系数超出我国规范限值;当干扰建筑间距不小于2.5倍干扰建筑高度时,干扰效应的影响很小,可忽略其影响。
风致积雪导致建筑屋盖压塌的现象屡见不鲜,研究典型屋盖积雪分布形式具有重要意义。本文运用ANSYS Fluent 计算流体力学软件二次开发功能和UDF编程实现风吹雪数值模拟,并通过对二维平屋面及三维弧形落地网壳的积雪模拟验证了模型的准确性。综合考虑不同风速、风向角及矢跨比对单跨拱形屋盖积雪分布的影响,结果显示建筑高度处风速为5m/s时,0°风向角下屋面局部范围积雪分布系数超出规范限值,90°风向角下屋面大部分范围积雪分布系数超出规范限值。研究了干扰建筑对拱形屋盖积雪分布的影响,其导致拱形屋盖迎风面一定范围内积雪分布系数超出我国规范限值;当干扰建筑间距不小于2.5倍干扰建筑高度时,干扰效应的影响很小,可忽略其影响。
对高原地区某工程的弧形大跨结构屋面的积雪分布规律进行了研究。采用FLUENT软件中的Mixture多相流模型建立风雪两相流场模型,分别采用标准k-w、SST k-w和k-kl-w湍流模型对立方体周围积雪分布规律开展了数值分析,通过与试验结果的对比分析验证了模型计算结果的准确性。进而详细研究了风速和风向角对弧形大跨结构屋面积雪分布的影响。结果表明:风向角主要影响弧形大跨结构屋面不同分区的积雪分布系数出现最大值和最小值的区域;0°和180°风向角最不利;位于屋面中部且高度相对较低的B2和B3区域积雪受风力侵蚀较少,屋面积雪分布系数较大;5m/s风速为该弧形大跨结构屋面积雪分布的最不利风速,远离来流方向且屋面有凸起的区域积雪沉积量较大;5m/s~13.5m/s风速范围内,屋面积雪分布系数随风速的增大不断减小;当风速增大至7m/s时,各分区的屋面积雪分布系数均小于1;提出了弧形大跨结构分区的屋面积雪分布系数,为相关工程设计提供参考。