冻土区路基各表面间太阳辐射的差异引起路基发生横向非均匀变形。目前所采用的基于太阳入射角的分析方法,未能充分考虑到冻土区高路基遮阳效应对周边冻土的影响,特别是在对路基坡脚附近冻土分析时与实际工况存在很大的偏差。基于太阳辐射强度和路基影子轨迹随时间的变化规律,提出利用遮阳理论分析路基表面太阳辐射的分析方法。通过对比K.Y.Kondratyev关于倾斜面接收太阳辐射的描述和工程实测数据,验证遮阳理论分析方法的正确性。基于遮阳理论提出直射率概念,并获得路基表面温度计算的经验方程。分析表明,冻土区路基各表面的太阳辐射之间存在明显的差异,其差异性与路基走向、坡度等影响因素密切相关。对于坡度较大的高路基,路基的遮阳效应也会引起路基周边冻土表面出现明显的非均匀太阳辐射,表现为越靠近路基坡脚辐射量越小,阴坡坡脚处辐射量小于阳坡坡脚处辐射量,这种太阳辐射的非均匀分布在路基的稳定性分析中应予以考虑。
通过分析太阳辐射强度和旱桥桥面影子轨迹随时间的变化规律,建立时间、太阳辐射强度、太阳位置和影子轨迹关系的数学模型,并利用该模型对旱桥桥面遮阳效应进行研究。提出直射率概念表示周边冻土获得的太阳直接辐射能量的比例。研究发现旱桥的高度、走向、桥面宽度等因素对桥下及周边范围冻土的太阳直射率影响很大。随着旱桥高度的增加,桥面遮阳影响范围增大,遮阳中心直射率增大;随着旱桥宽度的增加,桥下及周边冻土的直射率降低;东西走向的旱桥桥下及周边冻土表面直射率非对称性最为明显。旱桥桥面的遮阳可以有效减少桥下及周边冻土的太阳辐射热量,同时也会引起桩基周边冻土表面非均匀太阳辐射受热,这种太阳辐射的非均匀性不可忽视,在旱桥长期稳定性分析中应予以考虑。
遮阳板碎石复合护坡是一种集碎石护坡和遮阳板护坡双重效用于一体的新型复合护坡结构,是一种很好的治理高温冻土区块碎石护坡路基病害的补强措施。基于遮阳板和块碎石单个工程措施降温机制的研究,通过对这种新型复合护坡路基的温度场和速度场特征以及降温过程的研究,提出新型复合护坡路基的降温机制。研究发现,封闭新型复合护坡的主要降温机制是:复合护坡中遮阳板有遮阳和挡风雪作用,碎石层有"热半导体"效应和"热屏蔽效应"(屏蔽遮阳板的二次辐射);开放新型复合护坡的主要降温机制是:遮阳板有遮阳、挡风雪作用,碎石护坡有"热屏蔽效应"(屏蔽热风和二次辐射)和"烟囱效应",遮阳板和碎石护坡组合的通道有"虹吸效应"、"狭管效应"和"烟囱效应"。研究成果完善和深化了新型复合护坡路基研究基础,而且对遮阳板和块碎石结构在青藏铁路或青藏公路中的应用提供科学依据和技术支撑。
青藏高原低纬度高海拔地区,太阳辐射是土体升温的直接热源,而带有融化潜热的雨水垂直渗流有加速下部冻结层融化的趋势。基于对辐射、避雨、保证蒸发散热边界条件等方面考虑,提出了一种积极主动的保持冻土路基稳定的措施——遮阳板路基。文内对这种新措施的工作机理进行了分析,并总结了试验实体工程设计与施工中存在的一些问题。通过对试验路段和对比路段观测、调查分析认为,遮阳板路基护坡是一种可行的保持路基稳定的积极有效的新方法。
在青藏铁路和青藏公路的施工建设中,许多主动保护冻土的措施已经被采用,遮阳板就是其中有效的降温措施之一.由于青藏高原风速较平原地区大,且会对建筑物造成一定的破坏,所以文章以高原平均风速最大的地区-安多地区的风速条件为例对遮阳板的稳定性进行数值试验,从而得出合理的遮阳板的结构参数,为今后施工和维护提供了科学依据.
基于室内的系统试验,试验条件下研究发现遮阳板对热辐射的遮挡是有效避免路基坡面升温主要的因素;遮阳板下空气对流换热可及时带走遮阳板本身及遮阳板辐射产生的热量,这是避免坡面升温的重要补充;遮阳板下空气的有效流动,可以将坡面温度保持在较一般地表温度更低的水平上.由于遮阳板对下部空气层的限制作用,在遮阳板下产生“烟囱效应”,由此使得遮阳板下的空气流速得以大幅提高.青藏公路遮阳板试验段观测资料证明,通过遮阳板在路基边坡的实施,可以降低整个坡面年平均温度约3.2℃,并较天然地表低约1.5℃.
冻土区路基的安全可靠性取决于路基地温场特征和路基面抗自然侵蚀特征。在路基基床上部修筑遮阳棚和在边坡上修筑遮阳板既可阻挡太阳对路基面和路基边坡的直接辐射,改变路基地温场形态,降低土层温度,又可防止降水渗入路基或降雪覆盖路面。这对防止冻土退化,提高冻土区铁路路基安全可靠性是一种非常有效而又简单易行的工程措施。本文以青藏铁路冻土区遮挡式路基结构路基表面温度数据和该地段气象资料为基础,运用带有相变的一维热传导方程模拟分析了青藏铁路长期运营过程中遮挡式路基结构对冻土区路基人为上限的抬升效果及对路基稳定性的影响,认为遮挡式路基结构是一种安全可靠的冻土区路基工程结构形式,同时也是未来铁路运营过程整治路基病害的一种有效工程措施。