冻土在气候系统中起重要作用,研究并揭示冻土时空变化对于增加陆气相互作用的理解具有重要意义。本研究利用包含土壤冻结融化界面动态变化的陆面过程模式CAS-LSM(Chinese Academy of Sciences Land Surface Model),采用0.9°(纬度)×1.25°(经度)分辨率,结合4种大气强迫数据(全球土壤湿度项目强迫数据集GSWP3、美国国家大气研究中心/美国国家环境预报中心强迫数据集CRU-NCEP、普林斯顿全球强迫数据集Princeton、全球变化以及水文观测项目强迫数据集WFDEI)针对1960~2009年进行全球模拟,研究不同大气强迫作用下多年冻土活动层厚度变化趋势及其不确定性。通过与活动层厚度观测数据比较,陆面过程模式CASLSM模拟的活动层厚度与观测值比较接近。结果表明:在1960~2009年期间,不同大气强迫作用下多年冻土活动层厚度基本呈现增加的趋势,基于强迫数据WFDEI模拟的活动层厚度增加趋势最大。不同大气强迫数据模拟的活动层厚度区域平均和变化趋势范围为1.1~1.25 m和0.27~0.51 cm/a,相对变化的不确定性范围为11.2%~2...
冻土在气候系统中起重要作用,研究并揭示冻土时空变化对于增加陆气相互作用的理解具有重要意义。本研究利用包含土壤冻结融化界面动态变化的陆面过程模式CAS-LSM(Chinese Academy of Sciences Land Surface Model),采用0.9°(纬度)×1.25°(经度)分辨率,结合4种大气强迫数据(全球土壤湿度项目强迫数据集GSWP3、美国国家大气研究中心/美国国家环境预报中心强迫数据集CRU-NCEP、普林斯顿全球强迫数据集Princeton、全球变化以及水文观测项目强迫数据集WFDEI)针对1960~2009年进行全球模拟,研究不同大气强迫作用下多年冻土活动层厚度变化趋势及其不确定性。通过与活动层厚度观测数据比较,陆面过程模式CASLSM模拟的活动层厚度与观测值比较接近。结果表明:在1960~2009年期间,不同大气强迫作用下多年冻土活动层厚度基本呈现增加的趋势,基于强迫数据WFDEI模拟的活动层厚度增加趋势最大。不同大气强迫数据模拟的活动层厚度区域平均和变化趋势范围为1.1~1.25 m和0.27~0.51 cm/a,相对变化的不确定性范围为11.2%~2...
冻土在气候系统中起重要作用,研究并揭示冻土时空变化对于增加陆气相互作用的理解具有重要意义。本研究利用包含土壤冻结融化界面动态变化的陆面过程模式CAS-LSM(Chinese Academy of Sciences Land Surface Model),采用0.9°(纬度)×1.25°(经度)分辨率,结合4种大气强迫数据(全球土壤湿度项目强迫数据集GSWP3、美国国家大气研究中心/美国国家环境预报中心强迫数据集CRU-NCEP、普林斯顿全球强迫数据集Princeton、全球变化以及水文观测项目强迫数据集WFDEI)针对1960~2009年进行全球模拟,研究不同大气强迫作用下多年冻土活动层厚度变化趋势及其不确定性。通过与活动层厚度观测数据比较,陆面过程模式CASLSM模拟的活动层厚度与观测值比较接近。结果表明:在1960~2009年期间,不同大气强迫作用下多年冻土活动层厚度基本呈现增加的趋势,基于强迫数据WFDEI模拟的活动层厚度增加趋势最大。不同大气强迫数据模拟的活动层厚度区域平均和变化趋势范围为1.1~1.25 m和0.27~0.51 cm/a,相对变化的不确定性范围为11.2%~2...
青藏高原近地层土壤冻融过程是高原地表最显著的陆面特征之一,也是判断冻土发育、存在以及反映气候变化的重要指标。近地层土壤昼夜、季节性的冻结、融化会导致青藏高原陆—气间能水平衡的变化甚至异常,从而显著影响高原地表水文过程、生态环境、碳氮循环以及高原及其周边区域的天气和气候系统。论文从观测、模拟以及对气候的影响3个角度来探讨1990年以来青藏高原土壤冻融过程的最新研究进展。结果表明:①在一个完整的年冻融循环过程中,近地表各层土壤大体都经历了夏季融化期、春秋季融化—冻结期、冬季冻结期4个阶段。受局地因素的影响,不同站点的冻结或消融起止时间、速率、类型均有差异。②多年冻土区和季节冻土区的日冻融循环过程差异较大,主要体现在日冻融循环持续时间上。③不同陆面模式都可以很好地抓住冻融过程中物理量的时空变化,但都需要针对高原陆面过程的特点进行参数化改进。④规避不稳定的迭代计算并根据热力学平衡方程确定冻融临界温度可以改进不合理的冻融参数化方案。基于已有研究回顾,发现增加高质量的观测站,利用卫星遥感等多种手段来反演高原土壤冻融过程以及加强陆面模式与区域气候模式和全球气候模式的耦合,并立足于高原冻融过程的特点发...
青藏高原近地层土壤冻融过程是高原地表最显著的陆面特征之一,也是判断冻土发育、存在以及反映气候变化的重要指标。近地层土壤昼夜、季节性的冻结、融化会导致青藏高原陆—气间能水平衡的变化甚至异常,从而显著影响高原地表水文过程、生态环境、碳氮循环以及高原及其周边区域的天气和气候系统。论文从观测、模拟以及对气候的影响3个角度来探讨1990年以来青藏高原土壤冻融过程的最新研究进展。结果表明:①在一个完整的年冻融循环过程中,近地表各层土壤大体都经历了夏季融化期、春秋季融化—冻结期、冬季冻结期4个阶段。受局地因素的影响,不同站点的冻结或消融起止时间、速率、类型均有差异。②多年冻土区和季节冻土区的日冻融循环过程差异较大,主要体现在日冻融循环持续时间上。③不同陆面模式都可以很好地抓住冻融过程中物理量的时空变化,但都需要针对高原陆面过程的特点进行参数化改进。④规避不稳定的迭代计算并根据热力学平衡方程确定冻融临界温度可以改进不合理的冻融参数化方案。基于已有研究回顾,发现增加高质量的观测站,利用卫星遥感等多种手段来反演高原土壤冻融过程以及加强陆面模式与区域气候模式和全球气候模式的耦合,并立足于高原冻融过程的特点发...
青藏高原近地层土壤冻融过程是高原地表最显著的陆面特征之一,也是判断冻土发育、存在以及反映气候变化的重要指标。近地层土壤昼夜、季节性的冻结、融化会导致青藏高原陆—气间能水平衡的变化甚至异常,从而显著影响高原地表水文过程、生态环境、碳氮循环以及高原及其周边区域的天气和气候系统。论文从观测、模拟以及对气候的影响3个角度来探讨1990年以来青藏高原土壤冻融过程的最新研究进展。结果表明:①在一个完整的年冻融循环过程中,近地表各层土壤大体都经历了夏季融化期、春秋季融化—冻结期、冬季冻结期4个阶段。受局地因素的影响,不同站点的冻结或消融起止时间、速率、类型均有差异。②多年冻土区和季节冻土区的日冻融循环过程差异较大,主要体现在日冻融循环持续时间上。③不同陆面模式都可以很好地抓住冻融过程中物理量的时空变化,但都需要针对高原陆面过程的特点进行参数化改进。④规避不稳定的迭代计算并根据热力学平衡方程确定冻融临界温度可以改进不合理的冻融参数化方案。基于已有研究回顾,发现增加高质量的观测站,利用卫星遥感等多种手段来反演高原土壤冻融过程以及加强陆面模式与区域气候模式和全球气候模式的耦合,并立足于高原冻融过程的特点发...
考虑砾石(砾径大于2 mm)对陆面过程的作用,利用青藏高原玛多站实测资料检验陆面模式砾石参数化方案对BCCAVIM陆面过程模式土壤水热模拟的影响。结果发现,砾石改变了土壤质地的组成,造成土壤中水热基本参数的变化,从而影响土壤导水率和土壤导热率,最终影响土壤温湿度的模拟。利用玛多站实测数据,对比新旧方案,发现新方案减小了土壤温度和土壤含水量的模拟值,减小了模拟结果的绝对偏差和均方根误差,增大了土壤温湿度模拟的相关系数,改善了原模式土壤水热模拟性能,尤其是深层土壤含水量的模拟效果提升明显。同时,新方案减小了浅层土壤含冰量的模拟,增加了深层土壤含冰量的模拟,增大了积雪覆盖率和积雪深度的模拟。
考虑砾石(砾径大于2 mm)对陆面过程的作用,利用青藏高原玛多站实测资料检验陆面模式砾石参数化方案对BCCAVIM陆面过程模式土壤水热模拟的影响。结果发现,砾石改变了土壤质地的组成,造成土壤中水热基本参数的变化,从而影响土壤导水率和土壤导热率,最终影响土壤温湿度的模拟。利用玛多站实测数据,对比新旧方案,发现新方案减小了土壤温度和土壤含水量的模拟值,减小了模拟结果的绝对偏差和均方根误差,增大了土壤温湿度模拟的相关系数,改善了原模式土壤水热模拟性能,尤其是深层土壤含水量的模拟效果提升明显。同时,新方案减小了浅层土壤含冰量的模拟,增加了深层土壤含冰量的模拟,增大了积雪覆盖率和积雪深度的模拟。
考虑砾石(砾径大于2 mm)对陆面过程的作用,利用青藏高原玛多站实测资料检验陆面模式砾石参数化方案对BCCAVIM陆面过程模式土壤水热模拟的影响。结果发现,砾石改变了土壤质地的组成,造成土壤中水热基本参数的变化,从而影响土壤导水率和土壤导热率,最终影响土壤温湿度的模拟。利用玛多站实测数据,对比新旧方案,发现新方案减小了土壤温度和土壤含水量的模拟值,减小了模拟结果的绝对偏差和均方根误差,增大了土壤温湿度模拟的相关系数,改善了原模式土壤水热模拟性能,尤其是深层土壤含水量的模拟效果提升明显。同时,新方案减小了浅层土壤含冰量的模拟,增加了深层土壤含冰量的模拟,增大了积雪覆盖率和积雪深度的模拟。
对NCAR CLM3.0(Community Land Model)的冻土过程参数化进行了改进。根据平衡态的热力学关系和考虑含冰量的土壤基质势的经验公式定义了冰点下的最大液态水含量,超过最大液态水含量的部分冻结为冰,并在水导率的计算中加入了冰的阻挡作用。利用青藏高原改则站2003年4月1日至2004年12月31日的观测资料进行了单点模拟试验,模拟结果表明,原模式对辐射通量模拟比较准确,但低估了冬季冻结期的液态水含量,高估了冰含量,土壤温度也因此出现偏差,改进冻土参数化后对液态水和冰的模拟明显改善,土壤温度模拟也更接近实测,部分改进了模式对土壤水热过程的模拟能力。