在列表中检索

共检索到 13

利用吉林省区域气象站、降水现象仪、人工加密积雪深度观测资料和NCEP 1°×1°逐6 h再分析资料,对吉林省2021年11月6—11日一次罕见雨雪天气过程的积雪特征及温度和风对积雪的影响进行分析。结果表明:此次天气过程吉林省平均降雪含水比为1.11 cm·mm-1,东、西部差异明显。降雪量为中雪及以下时降雪含水比随降雪量增大而增大,降雪量为中雪以上时降雪含水比随降雪量增大而减小。高空温度、湿度和垂直速度配置不同导致冰晶形状不同,进而影响积雪深度和降雪含水比。降雪含水比随平均气温升高呈减小趋势,当平均气温高于-4℃时,降雪含水比小于1.5 cm·mm-1。地面出现有效积雪需要0 cm地温低于0℃。当风速大于5.2 m·s-1以后随着风速增大降雪含水比减小,降雪含水比极值多出现在3级风以下。

期刊论文 2024-12-10

利用吉林省区域气象站、降水现象仪、人工加密积雪深度观测资料和NCEP 1°×1°逐6 h再分析资料,对吉林省2021年11月6—11日一次罕见雨雪天气过程的积雪特征及温度和风对积雪的影响进行分析。结果表明:此次天气过程吉林省平均降雪含水比为1.11 cm·mm-1,东、西部差异明显。降雪量为中雪及以下时降雪含水比随降雪量增大而增大,降雪量为中雪以上时降雪含水比随降雪量增大而减小。高空温度、湿度和垂直速度配置不同导致冰晶形状不同,进而影响积雪深度和降雪含水比。降雪含水比随平均气温升高呈减小趋势,当平均气温高于-4℃时,降雪含水比小于1.5 cm·mm-1。地面出现有效积雪需要0 cm地温低于0℃。当风速大于5.2 m·s-1以后随着风速增大降雪含水比减小,降雪含水比极值多出现在3级风以下。

期刊论文 2024-12-10

利用吉林省区域气象站、降水现象仪、人工加密积雪深度观测资料和NCEP 1°×1°逐6 h再分析资料,对吉林省2021年11月6—11日一次罕见雨雪天气过程的积雪特征及温度和风对积雪的影响进行分析。结果表明:此次天气过程吉林省平均降雪含水比为1.11 cm·mm-1,东、西部差异明显。降雪量为中雪及以下时降雪含水比随降雪量增大而增大,降雪量为中雪以上时降雪含水比随降雪量增大而减小。高空温度、湿度和垂直速度配置不同导致冰晶形状不同,进而影响积雪深度和降雪含水比。降雪含水比随平均气温升高呈减小趋势,当平均气温高于-4℃时,降雪含水比小于1.5 cm·mm-1。地面出现有效积雪需要0 cm地温低于0℃。当风速大于5.2 m·s-1以后随着风速增大降雪含水比减小,降雪含水比极值多出现在3级风以下。

期刊论文 2024-12-10

利用吉林省区域气象站、降水现象仪、人工加密积雪深度观测资料和NCEP 1°×1°逐6 h再分析资料,对吉林省2021年11月6—11日一次罕见雨雪天气过程的积雪特征及温度和风对积雪的影响进行分析。结果表明:此次天气过程吉林省平均降雪含水比为1.11 cm·mm-1,东、西部差异明显。降雪量为中雪及以下时降雪含水比随降雪量增大而增大,降雪量为中雪以上时降雪含水比随降雪量增大而减小。高空温度、湿度和垂直速度配置不同导致冰晶形状不同,进而影响积雪深度和降雪含水比。降雪含水比随平均气温升高呈减小趋势,当平均气温高于-4℃时,降雪含水比小于1.5 cm·mm-1。地面出现有效积雪需要0 cm地温低于0℃。当风速大于5.2 m·s-1以后随着风速增大降雪含水比减小,降雪含水比极值多出现在3级风以下。

期刊论文 2024-12-10

利用1991—2020年11月至次年4月呼伦贝尔市16个国家气象站24 h(08—08时)累积降水量、24 h新增积雪深度、日平均地面温度、日平均地面风速等资料,通过对筛选出来的降雪事件分析全市降雪含水比的变化特征,并分析地面温度和地面风速对降雪含水比的影响,研究结果表明:(1)呼伦贝尔市24 h降雪含水比平均值为10.01,中位数为9.30,众数为11.50;变化范围跨度较大,主要集中在2.00~22.00,降雪含水比大于22.00的极端值出现频率较低。(2)呼伦贝尔市各地平均降雪含水比空间分布存在差异,不同台站的平均降雪含水比变化范围在8.69~11.72;11月至次年3月平均降雪含水比稳定在10.00附近,12月最大,4月最小,存在显著月变化特征。(3)不同量级降雪的平均降雪含水比不同,中雪约为10.00、大雪约为9.00、暴雪及以上为8.60,呈现出降雪量级越大其值越小的特征。(4)地面温度为-18.0~-3.0℃,平均降雪含水比稳定在10.00~11.00;当地面温度低于-18.0℃或高于-3.0℃时,平均降雪含水比不稳定,呈跳跃性,忽高忽低。地面风速> 4.5 m·s...

期刊论文 2023-05-29 DOI: 10.14174/j.cnki.nmqx.2023.01.002

利用1991—2020年11月至次年4月呼伦贝尔市16个国家气象站24 h(08—08时)累积降水量、24 h新增积雪深度、日平均地面温度、日平均地面风速等资料,通过对筛选出来的降雪事件分析全市降雪含水比的变化特征,并分析地面温度和地面风速对降雪含水比的影响,研究结果表明:(1)呼伦贝尔市24 h降雪含水比平均值为10.01,中位数为9.30,众数为11.50;变化范围跨度较大,主要集中在2.00~22.00,降雪含水比大于22.00的极端值出现频率较低。(2)呼伦贝尔市各地平均降雪含水比空间分布存在差异,不同台站的平均降雪含水比变化范围在8.69~11.72;11月至次年3月平均降雪含水比稳定在10.00附近,12月最大,4月最小,存在显著月变化特征。(3)不同量级降雪的平均降雪含水比不同,中雪约为10.00、大雪约为9.00、暴雪及以上为8.60,呈现出降雪量级越大其值越小的特征。(4)地面温度为-18.0~-3.0℃,平均降雪含水比稳定在10.00~11.00;当地面温度低于-18.0℃或高于-3.0℃时,平均降雪含水比不稳定,呈跳跃性,忽高忽低。地面风速> 4.5 m·s...

期刊论文 2023-05-29 DOI: 10.14174/j.cnki.nmqx.2023.01.002

利用1991—2020年11月至次年4月呼伦贝尔市16个国家气象站24 h(08—08时)累积降水量、24 h新增积雪深度、日平均地面温度、日平均地面风速等资料,通过对筛选出来的降雪事件分析全市降雪含水比的变化特征,并分析地面温度和地面风速对降雪含水比的影响,研究结果表明:(1)呼伦贝尔市24 h降雪含水比平均值为10.01,中位数为9.30,众数为11.50;变化范围跨度较大,主要集中在2.00~22.00,降雪含水比大于22.00的极端值出现频率较低。(2)呼伦贝尔市各地平均降雪含水比空间分布存在差异,不同台站的平均降雪含水比变化范围在8.69~11.72;11月至次年3月平均降雪含水比稳定在10.00附近,12月最大,4月最小,存在显著月变化特征。(3)不同量级降雪的平均降雪含水比不同,中雪约为10.00、大雪约为9.00、暴雪及以上为8.60,呈现出降雪量级越大其值越小的特征。(4)地面温度为-18.0~-3.0℃,平均降雪含水比稳定在10.00~11.00;当地面温度低于-18.0℃或高于-3.0℃时,平均降雪含水比不稳定,呈跳跃性,忽高忽低。地面风速> 4.5 m·s...

期刊论文 2023-05-29 DOI: 10.14174/j.cnki.nmqx.2023.01.002

利用地面自动气象站资料、人工加密积雪深度逐时观测资料和ERA5再分析资料,对山东2021年11月6—8日极端雨雪过程积雪特征进行分析。结果表明:(1)降水量突破同期历史极值导致此次雨雪过程成为极端天气事件,积雪深度是预报难点。(2)暴雪和积雪集中分布在山东的中北部地区,有量积雪的范围与降雪量R≥5 mm的分布范围基本一致。积雪深度具有明显的时间变化特征。(3)在山东典型回流暴雪天气形势下,有利的水汽、动力条件和冷空气降温作用,造成山东出现极端雨雪。低层的强冷平流降温导致降水发生相态转换,山东中北部出现暴雪及严重积雪。(4)积雪区降雪含水比差异大,平均降雪含水比为0.53 cm·mm-1,比历史平均值偏低。积雪深度与高空温度、相对湿度和垂直速度的配置有关,低的温度有利于降雪和积雪。地理位置、鲁中山地地形和地面风速对积雪深度有影响,海陆差异较纬度差异影响大,海拔高度影响较小。(5)欧洲中期天气预报中心业务预报模式积雪产品对山东积雪有较好的预报能力,时效近、误差小,但存在预报总体偏弱、北部偏小和中南部偏大的特点。

期刊论文 2022-12-06 DOI: 10.19513/j.cnki.issn2096-3599.2022.04.006

利用地面自动气象站资料、人工加密积雪深度逐时观测资料和ERA5再分析资料,对山东2021年11月6—8日极端雨雪过程积雪特征进行分析。结果表明:(1)降水量突破同期历史极值导致此次雨雪过程成为极端天气事件,积雪深度是预报难点。(2)暴雪和积雪集中分布在山东的中北部地区,有量积雪的范围与降雪量R≥5 mm的分布范围基本一致。积雪深度具有明显的时间变化特征。(3)在山东典型回流暴雪天气形势下,有利的水汽、动力条件和冷空气降温作用,造成山东出现极端雨雪。低层的强冷平流降温导致降水发生相态转换,山东中北部出现暴雪及严重积雪。(4)积雪区降雪含水比差异大,平均降雪含水比为0.53 cm·mm-1,比历史平均值偏低。积雪深度与高空温度、相对湿度和垂直速度的配置有关,低的温度有利于降雪和积雪。地理位置、鲁中山地地形和地面风速对积雪深度有影响,海陆差异较纬度差异影响大,海拔高度影响较小。(5)欧洲中期天气预报中心业务预报模式积雪产品对山东积雪有较好的预报能力,时效近、误差小,但存在预报总体偏弱、北部偏小和中南部偏大的特点。

期刊论文 2022-12-06 DOI: 10.19513/j.cnki.issn2096-3599.2022.04.006

利用地面自动气象站资料、人工加密积雪深度逐时观测资料和ERA5再分析资料,对山东2021年11月6—8日极端雨雪过程积雪特征进行分析。结果表明:(1)降水量突破同期历史极值导致此次雨雪过程成为极端天气事件,积雪深度是预报难点。(2)暴雪和积雪集中分布在山东的中北部地区,有量积雪的范围与降雪量R≥5 mm的分布范围基本一致。积雪深度具有明显的时间变化特征。(3)在山东典型回流暴雪天气形势下,有利的水汽、动力条件和冷空气降温作用,造成山东出现极端雨雪。低层的强冷平流降温导致降水发生相态转换,山东中北部出现暴雪及严重积雪。(4)积雪区降雪含水比差异大,平均降雪含水比为0.53 cm·mm-1,比历史平均值偏低。积雪深度与高空温度、相对湿度和垂直速度的配置有关,低的温度有利于降雪和积雪。地理位置、鲁中山地地形和地面风速对积雪深度有影响,海陆差异较纬度差异影响大,海拔高度影响较小。(5)欧洲中期天气预报中心业务预报模式积雪产品对山东积雪有较好的预报能力,时效近、误差小,但存在预报总体偏弱、北部偏小和中南部偏大的特点。

期刊论文 2022-12-06 DOI: 10.19513/j.cnki.issn2096-3599.2022.04.006
  • 首页
  • 1
  • 2
  • 末页
  • 跳转
当前展示1-10条  共13条,2页