利用2018—2023年贵州高原北侧冬季降雪滴谱数据,采用统计方法对比分析雨滴谱和雪滴谱的粒子数目、粒子直径和下落速度的分布特征,研究降雪量、积雪深度与粒子相态、粒子数目、粒子尺度的变化趋势一致性,检验粒子体积反演降雪量、积雪深度算法的适用性。结果表明:(1)雪滴谱直径谱宽分布在5~15 mm之间,平均直径谱宽>8 mm,属于宽谱降水类型;雨滴谱直径谱宽分布在1~5 mm之间,平均直径谱宽小于3 mm,属于窄谱降水类型。(2)大多数雪粒子分布在速度谱宽<5 m·s-1以下的区域内,这是由雪粒子形状偏平、密度较小、尺度较大而导致。(3)降雪量反演结果与实测结果的一致性和相关性均优于积雪深度反演,这与环境温度作用下的降水相态转化、积雪融化速率有关。(4)把粒子数占比、粒子速度谱宽作为冬季降雪天气类型识别具有很好的指示作用,降雪粒子下落至地面的起止时间和粒子数目可以直观反映整个降雪天气过程的演变特征。
利用2018—2023年贵州高原北侧冬季降雪滴谱数据,采用统计方法对比分析雨滴谱和雪滴谱的粒子数目、粒子直径和下落速度的分布特征,研究降雪量、积雪深度与粒子相态、粒子数目、粒子尺度的变化趋势一致性,检验粒子体积反演降雪量、积雪深度算法的适用性。结果表明:(1)雪滴谱直径谱宽分布在5~15 mm之间,平均直径谱宽>8 mm,属于宽谱降水类型;雨滴谱直径谱宽分布在1~5 mm之间,平均直径谱宽小于3 mm,属于窄谱降水类型。(2)大多数雪粒子分布在速度谱宽<5 m·s-1以下的区域内,这是由雪粒子形状偏平、密度较小、尺度较大而导致。(3)降雪量反演结果与实测结果的一致性和相关性均优于积雪深度反演,这与环境温度作用下的降水相态转化、积雪融化速率有关。(4)把粒子数占比、粒子速度谱宽作为冬季降雪天气类型识别具有很好的指示作用,降雪粒子下落至地面的起止时间和粒子数目可以直观反映整个降雪天气过程的演变特征。
利用2018—2023年贵州高原北侧冬季降雪滴谱数据,采用统计方法对比分析雨滴谱和雪滴谱的粒子数目、粒子直径和下落速度的分布特征,研究降雪量、积雪深度与粒子相态、粒子数目、粒子尺度的变化趋势一致性,检验粒子体积反演降雪量、积雪深度算法的适用性。结果表明:(1)雪滴谱直径谱宽分布在5~15 mm之间,平均直径谱宽>8 mm,属于宽谱降水类型;雨滴谱直径谱宽分布在1~5 mm之间,平均直径谱宽小于3 mm,属于窄谱降水类型。(2)大多数雪粒子分布在速度谱宽<5 m·s-1以下的区域内,这是由雪粒子形状偏平、密度较小、尺度较大而导致。(3)降雪量反演结果与实测结果的一致性和相关性均优于积雪深度反演,这与环境温度作用下的降水相态转化、积雪融化速率有关。(4)把粒子数占比、粒子速度谱宽作为冬季降雪天气类型识别具有很好的指示作用,降雪粒子下落至地面的起止时间和粒子数目可以直观反映整个降雪天气过程的演变特征。
利用2018—2023年贵州高原北侧冬季降雪滴谱数据,采用统计方法对比分析雨滴谱和雪滴谱的粒子数目、粒子直径和下落速度的分布特征,研究降雪量、积雪深度与粒子相态、粒子数目、粒子尺度的变化趋势一致性,检验粒子体积反演降雪量、积雪深度算法的适用性。结果表明:(1)雪滴谱直径谱宽分布在5~15 mm之间,平均直径谱宽>8 mm,属于宽谱降水类型;雨滴谱直径谱宽分布在1~5 mm之间,平均直径谱宽小于3 mm,属于窄谱降水类型。(2)大多数雪粒子分布在速度谱宽<5 m·s-1以下的区域内,这是由雪粒子形状偏平、密度较小、尺度较大而导致。(3)降雪量反演结果与实测结果的一致性和相关性均优于积雪深度反演,这与环境温度作用下的降水相态转化、积雪融化速率有关。(4)把粒子数占比、粒子速度谱宽作为冬季降雪天气类型识别具有很好的指示作用,降雪粒子下落至地面的起止时间和粒子数目可以直观反映整个降雪天气过程的演变特征。
利用2018—2023年贵州高原北侧冬季降雪滴谱数据,采用统计方法对比分析雨滴谱和雪滴谱的粒子数目、粒子直径和下落速度的分布特征,研究降雪量、积雪深度与粒子相态、粒子数目、粒子尺度的变化趋势一致性,检验粒子体积反演降雪量、积雪深度算法的适用性。结果表明:(1)雪滴谱直径谱宽分布在5~15 mm之间,平均直径谱宽>8 mm,属于宽谱降水类型;雨滴谱直径谱宽分布在1~5 mm之间,平均直径谱宽小于3 mm,属于窄谱降水类型。(2)大多数雪粒子分布在速度谱宽<5 m·s-1以下的区域内,这是由雪粒子形状偏平、密度较小、尺度较大而导致。(3)降雪量反演结果与实测结果的一致性和相关性均优于积雪深度反演,这与环境温度作用下的降水相态转化、积雪融化速率有关。(4)把粒子数占比、粒子速度谱宽作为冬季降雪天气类型识别具有很好的指示作用,降雪粒子下落至地面的起止时间和粒子数目可以直观反映整个降雪天气过程的演变特征。
积雪是冰冻圈的重要组成部分,近年来气候变暖导致积雪面积正在减少,这一变化可能引发水资源分配不均以及生物多样性下降,进而影响当地的生活经济发展和生态环境。青海湖是我国最大的内陆湖泊,近年来其水位快速变化,入湖径流受流域内积雪及其变化的影响,但青海湖流域积雪特征、变化及其影响原因尚不清晰。基于中国MODIS逐日无云500 m积雪面积产品数据集以及中国区域地面气象要素驱动数据集(China Meteorological Forcing Dataset, CMFD)的气温和降水数据,本文对青海湖流域积雪时空变化特征及影响原因进行了研究。结果表明:(1)2000-2020年年均积雪频次分布与海拔之间存在较好的对应关系,随着海拔的降低,积雪频次也相应减少;同时受年均气温和年降水量的影响,其中,受年均气温显著偏相关影响的区域主要分布在青海湖北部和东部,受年降水量显著偏相关影响的区域主要分布在青海湖流域中部的布哈河中上游。(2)2001-2017年,青海湖流域和祁连山地区降水增加,但受两地区年均气温增长和年降雪量减少的影响,积雪面积减少。(3)青海湖流域和祁连山地区积雪面积年内变化较为相似,均呈双峰波...
积雪是冰冻圈的重要组成部分,近年来气候变暖导致积雪面积正在减少,这一变化可能引发水资源分配不均以及生物多样性下降,进而影响当地的生活经济发展和生态环境。青海湖是我国最大的内陆湖泊,近年来其水位快速变化,入湖径流受流域内积雪及其变化的影响,但青海湖流域积雪特征、变化及其影响原因尚不清晰。基于中国MODIS逐日无云500 m积雪面积产品数据集以及中国区域地面气象要素驱动数据集(China Meteorological Forcing Dataset, CMFD)的气温和降水数据,本文对青海湖流域积雪时空变化特征及影响原因进行了研究。结果表明:(1)2000-2020年年均积雪频次分布与海拔之间存在较好的对应关系,随着海拔的降低,积雪频次也相应减少;同时受年均气温和年降水量的影响,其中,受年均气温显著偏相关影响的区域主要分布在青海湖北部和东部,受年降水量显著偏相关影响的区域主要分布在青海湖流域中部的布哈河中上游。(2)2001-2017年,青海湖流域和祁连山地区降水增加,但受两地区年均气温增长和年降雪量减少的影响,积雪面积减少。(3)青海湖流域和祁连山地区积雪面积年内变化较为相似,均呈双峰波...
积雪是冰冻圈的重要组成部分,近年来气候变暖导致积雪面积正在减少,这一变化可能引发水资源分配不均以及生物多样性下降,进而影响当地的生活经济发展和生态环境。青海湖是我国最大的内陆湖泊,近年来其水位快速变化,入湖径流受流域内积雪及其变化的影响,但青海湖流域积雪特征、变化及其影响原因尚不清晰。基于中国MODIS逐日无云500 m积雪面积产品数据集以及中国区域地面气象要素驱动数据集(China Meteorological Forcing Dataset, CMFD)的气温和降水数据,本文对青海湖流域积雪时空变化特征及影响原因进行了研究。结果表明:(1)2000-2020年年均积雪频次分布与海拔之间存在较好的对应关系,随着海拔的降低,积雪频次也相应减少;同时受年均气温和年降水量的影响,其中,受年均气温显著偏相关影响的区域主要分布在青海湖北部和东部,受年降水量显著偏相关影响的区域主要分布在青海湖流域中部的布哈河中上游。(2)2001-2017年,青海湖流域和祁连山地区降水增加,但受两地区年均气温增长和年降雪量减少的影响,积雪面积减少。(3)青海湖流域和祁连山地区积雪面积年内变化较为相似,均呈双峰波...
积雪是冰冻圈的重要组成部分,近年来气候变暖导致积雪面积正在减少,这一变化可能引发水资源分配不均以及生物多样性下降,进而影响当地的生活经济发展和生态环境。青海湖是我国最大的内陆湖泊,近年来其水位快速变化,入湖径流受流域内积雪及其变化的影响,但青海湖流域积雪特征、变化及其影响原因尚不清晰。基于中国MODIS逐日无云500 m积雪面积产品数据集以及中国区域地面气象要素驱动数据集(China Meteorological Forcing Dataset, CMFD)的气温和降水数据,本文对青海湖流域积雪时空变化特征及影响原因进行了研究。结果表明:(1)2000-2020年年均积雪频次分布与海拔之间存在较好的对应关系,随着海拔的降低,积雪频次也相应减少;同时受年均气温和年降水量的影响,其中,受年均气温显著偏相关影响的区域主要分布在青海湖北部和东部,受年降水量显著偏相关影响的区域主要分布在青海湖流域中部的布哈河中上游。(2)2001-2017年,青海湖流域和祁连山地区降水增加,但受两地区年均气温增长和年降雪量减少的影响,积雪面积减少。(3)青海湖流域和祁连山地区积雪面积年内变化较为相似,均呈双峰波...
积雪是冰冻圈的重要组成部分,近年来气候变暖导致积雪面积正在减少,这一变化可能引发水资源分配不均以及生物多样性下降,进而影响当地的生活经济发展和生态环境。青海湖是我国最大的内陆湖泊,近年来其水位快速变化,入湖径流受流域内积雪及其变化的影响,但青海湖流域积雪特征、变化及其影响原因尚不清晰。基于中国MODIS逐日无云500 m积雪面积产品数据集以及中国区域地面气象要素驱动数据集(China Meteorological Forcing Dataset, CMFD)的气温和降水数据,本文对青海湖流域积雪时空变化特征及影响原因进行了研究。结果表明:(1)2000-2020年年均积雪频次分布与海拔之间存在较好的对应关系,随着海拔的降低,积雪频次也相应减少;同时受年均气温和年降水量的影响,其中,受年均气温显著偏相关影响的区域主要分布在青海湖北部和东部,受年降水量显著偏相关影响的区域主要分布在青海湖流域中部的布哈河中上游。(2)2001-2017年,青海湖流域和祁连山地区降水增加,但受两地区年均气温增长和年降雪量减少的影响,积雪面积减少。(3)青海湖流域和祁连山地区积雪面积年内变化较为相似,均呈双峰波...