Aeolian sand, as a primary medium of desertification, changes surface energy budgets and consequently affects both ecological systems and infrastructure stability on the Tibetan Plateau. Accurate interpretation of upper boundary conditions is critical for assessing aeolian sand's effects on subsurface hydrothermal processes. Nevertheless, current numerical simulations typically rely on empirical thermal boundaries and neglect surface radiation components and latent heat exchange, causing, significant deviations between simulations and field observations. This study establishes a thermal boundary model to calculate net surface energy (Q) based on energy balance theory and 13 sets of reflectance experiments. Using meteorological data from 2003 to 2019, soil temperature evolution was simulated under three aeolian sand coverage conditions: dry, 5 % moisture, and 10 % moisture. Results indicated that the simulated outputs exhibit strong correlations with observed data in terms of trend direction, phase timing of peaks and troughs, and temperature amplitude (R > 0.93, p < 0.0001). At the sand-atmosphere interface (-0.05 m), the annual mean temperature under dry aeolian sand cover reached 5.300 degrees C, which is 4.823 degrees C higher than that of the exposed surface (0.477 degrees C) during 2005-2006. When including moisture, the latent heat-driven cooling effect became evident, and the annual mean temperature at the sand surface dropped significantly to 0.930 degrees C (5 % moisture) and 1.461 degrees C (10 % moisture). More importantly, moisture cooling effects in shallow layers (-0.05 to-0.4 m) exhibit non-monotonic behavior: 10 % moisture yields higher annual mean temperatures than 5 % moisture (e.g., 1.370 degrees C vs. 0.858 degrees C at-0.2 m), suggesting aeolian sand's thermal impact on underlying permafrost involves critical moisture thresholds.