Protecting the environment is essential because a healthy ecosystem purifies air and water, maintains the soil, regulates the temperature, recycles nutrients, and provides food. However, when nations experience fast growth, they pay the utmost attention to their development and disregard the environmental and development-related consequences. The BRICS economies are examples of nations that have achieved high economic growth rates while polluting their environment via industrial expansion. Hence, this study aims to scrutinise the effects of forest rent, agricultural production, economic growth, and energy consumption on BRICS economies' carbon emissions and ecological footprint from 1995 to 2017. We adopted panel spatial correlation consistent least-squares dummy variables (PSCC-LSDV) estimation and panel quantile regression (PQR) techniques to perform the above-mentioned comparative analysis. The first-hand empirical consequences revealed that agricultural production, renewable energy consumption, and financial development condense the carbon discharge, and the rest of the variables trigger the carbon emission. In addition, GDPC, forest rents, non-renewable energy consumption, and domestic investment damage the environmental prominence by instigating an ecological footprint, whereas the remaining variables oblige to moderate the ecological footprint. Finally, this study recommends rigorous policies to mitigate pollution emissions to help reinstate environmental eminence.
Sustainability is defined as the process of developing and responsibly sustaining a healthy built environment based on resource-efficient and ecological principles. When it comes to sustainability, earthen construction is a good choice because of its minimal carbon impact and lower operating expenses. This study investigates the cost comparison between Alker and a reinforced concrete office with a dimension of 6 x 6 m. Alker is a stabilised form of earthen building. Based on the dry weight of the soil, it contains 10% gypsum, 2% lime, and 20%-22% water. Shredded plastic waste (SPW) was added to Alker to improve its properties with the addition of the environmental effect of plastic waste. The results showed that the office built with reinforced concrete had a total cost of Turkish Lira;119 348.57 (6630), whereas the building built with Alker materials had a total cost of Turkish Lira;103 474.19 (5748). Therefore, offices built with Alker's added SPW are 13% cheaper than offices built with reinforced concrete. Alker modified with shredded plastic waste has been demonstrated to be a sustainable building material with enhanced properties.
Understanding the dynamics of soil respiration (Rs) in response to freeze-thaw cycles is crucial due to permafrost degradation on the Qinghai-Tibet Plateau (QTP). We conducted continuous in situ observations of Rs using an Li-8150 automated soil CO2 flux system, categorizing the freeze-thaw cycle into four stages: completely thawed (CT), autumn freeze-thaw (AFT), completely frozen (CF), and spring freeze-thaw (SFT). Our results revealed distinct differences in Rs magnitudes, diurnal patterns, and controlling factors across these stages, attributed to varying thermal regimes. The mean Rs values were as follows: 2.51 (1.10) mu mol center dot m(-2)center dot s(-1) (CT), 0.37 (0.04) mu mol center dot m(-2)center dot s(-1) (AFT), 0.19 (0.06) mu mol center dot m(-2)center dot s(-1) (CF), and 0.68 (0.19) mu mol center dot m(-2)center dot s(-1) (SFT). Cumulatively, the Rs contributions to annual totals were 89.32% (CT), 0.79% (AFT), 5.01% (CF), and 4.88% (SFT). Notably, the temperature sensitivity (Q10) value during SFT was 2.79 times greater than that in CT (4.63), underscoring the significance of CO2 emissions during spring warming. Soil temperature was the primary driver of Rs in the CT stage, while soil moisture at 5 cm depth and solar radiation significantly influenced Rs during SFT. Our findings suggest that global warming will alter seasonal Rs patterns as freeze-thaw phases evolve, emphasizing the need to monitor CO2 emissions from alpine meadow ecosystems during spring.
Inspired by the wisdom of Tabia, an ancient building material with superior mechanical properties, this paper utilized accelerated CO2 mineralization (CM) method to treat silty waste soil (SWS) with active lime after the pressing forming process for construction block manufacture. The influence of Ca(OH)(2) content and curing duration were explored. Results indicate that the generated CaCO3 could fill pores and improve strength of the SWS blocks after CM treatment. At the optimal Ca(OH)(2) content of 15 % and curing duration of 24 h, the CMSWS blocks possessed the compressive strength of 12.8 MPa, CO2 emissions of 84.59 kgCO(2)/m(3) and cost of 196.26 CNY/m(3), comparable with or superior than the commercial blocks. The findings would deepen the mechanistic understandings of CM treatment in material reinforcement, and pave a proof-of-concept path to sustainably upgrade the SWS of poor engineering performance for building material production.
As the population grows, more food is needed to keep the food supply chain running smoothly. For many years, intensive farming systems have been used to meet this need. Currently, due to intense climate change and other global natural problems, there is a shift towards sustainable use of natural resources and simplified methods of tillage. Soil tillage intensity influences the distribution of nutrients, and soil's physical and mechanical properties, as well as gas flows. The impact of reduced tillage on these indices in spring barley cultivation is still insufficient and requires more analysis on a global scale. This study was carried out at Vytautas Magnus University, Agriculture Academy (Lithuania) in 2022-2023. The aim of the investigation was to determine the effect of the tillage systems on the soil temperature, moisture content, CO2 respiration and concentration in spring barley cultivation. Based on a long-term tillage experiment, five tillage systems were tested: deep and shallow moldboard ploughing, deep cultivation-chiseling, shallow cultivation-chiseling, and no tillage Shallow plowing technology has been found to better conserve soil moisture and maintain higher temperatures in most cases. During almost the entire study period, the spring barley crop with deep cultivation had lower moisture content and lower soil temperature. Shallow cultivation fields in most cases increased CO2 emissions and CO2 concentration. When applying direct sowing to the uncultivated soil (10-20 cm), the concentration of CO2 decreased from 0.01 to 0.148 percent. pcs. The results show that in direct sowing fields, most cases had a positive effect on crop density. Direct sowing fields resulted in significantly lower, from 7.9 to 26.5%, grain yields of spring barley in the years studied.
In recent years, there has been an increasing interest in investigating the use of non-traditional additives for stabilizing problematic soils. As the demand for eco-friendly alternatives to cement rises, magnesium chloride, a widely used deicer and dust suppressor, has emerged as a potential choice. This study aims to provide a comprehensive understanding of the microstructural changes that occur and affect the macro behavior of treated bentonite (B) and yellow marl (YM). To achieve this, MgCl2 solution was added to the soils at 3, 6, 9, and 12 percent by dry weight of the soil, and samples were cured for 7, 14, and 28 days at 5 degrees C, 25 degrees C, and 35 degrees C. The mechanical properties of the treated soils were then evaluated using the unconfined compression test, direct shear test, and pressure chamber test (SWCC), while microstructural analysis techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry (EDAX), and Fourier transform infrared spectroscopy (FTIR) were employed to examine the mechanism of MgCl2 stabilization. The results indicate that adding MgCl2 and extending the curing period significantly increased both soils' unconfined compressive strength (UCS). However, the UCS value decreased for treated samples cured at temperatures higher than 25 degrees C due to an incomplete cation exchange process and the reduction of apparent cohesion. A part of the gained strength from apparent cohesion and matric suction in the unsaturated samples was lost when the samples reached full saturation during the direct shear test. Changes in the particle size, pore size, and pore void distribution due to the MgCl2 stabilization affected the SWCCs of the treated soils. Microstructural analyses revealed the formation of magnesium hydration products, such as magnesium silicate hydrate (M-S-H) and magnesium aluminate hydrate (M-A-H), which contributed to the strength increase by increasing grain size, filling the pores, binding fine particles within coarse grains, and forming a flocculated structure through recrystallization of MgCl2 and the formation of cementitious gel. Additionally, for B, adding MgCl2 led to soil flocculation through ion exchange, while for YM, the same process occurred due to the greater surface tension of the saline solution encircling the particles.
Soil freezing-thawing cycle (FTC) is an important factor controlling C dynamics in mid-high latitude regions, especially in the permafrost regions impacted by global warming. Nonetheless, the response of C cycling in the deeper active layers of permafrost regions to FTC remains far from certain. We aimed to characterize the emission of CO2 from soils of multiple depths as impacted by FTC and its relationship with active organic C (OC) and enzyme activities. We collected soil samples from three soil layers (0-15, 15-30, and 30-45 cm) of an undisturbed peatland in the Da Xing'anling Mountains, NE China, and then subjected them to various freezing (10 to -10 degrees C) and thawing (-10 to 10 degrees C) cycles. Soil CO2 emissions, two active OC fractions, and activities of three enzymes were monitored during incubation periods. At the thawing stage of the first FTC, CO2 emission rates in the three soil layers presented transient peaks being approximate to 1.6-1.7 times higher than those of the unfrozen control sample. Although FTC did not change the overall patterns of decreasing CO2 emission along the soil profile, FTC significantly reduced the amount of CO2 emission when compared with the unfrozen control sample, possibly because the small CO2 emission at the freezing stage neutralized the peak of CO2 emission at the thawing stage. This study suggests that in the active layer of permafrost peatlands, CO2 emission during FTCs may be lower than the emission under higher temperatures, but experiment with more temperature gradients should be encouraged to verify this conclusion in the future. Meanwhile, FTC significantly increased water extracted OC release from the three soil layers, approximate to 1.2-1.6 times higher compared to the unfrozen control sample, indicating that soil carbon loss in the form of leachate may increase during freezing-thawing periods. Additionally, the CO2 emissions impacted by FTCs were significantly correlated with active OC fractions and enzyme activities, which indicated that active OC and enzymes were sensitive to FTCs, and surviving microbes and enzymes might use the increased liable substrates and induce the CO2 emission during freezing-thawing periods.