The laboratory experiment is an effective tool for the rapid assessment of the unsaturated soil slopes instability induced by extreme weather events. However, traditional experimental methods for unsaturated soils, including the measurement of the soil-water characteristic curve (SWCC), soil hydraulic conductivity function (SHCF), shear strength envelope, etc., are time-consuming. To overcome this limitation, a rapid testing strategy is proposed. In the experimental design, the water saturation level is selected as the control variable instead of the suction level. In the suction measurement, the suction monitoring method is adopted instead of the suction control method, allowing for simultaneous testing of multiple soil samples. The proposed rapid testing strategy is applied to measure the soil hydro-mechanical properties over a wide suction/saturation range. The results demonstrate that: (1) only 3-4 samples and 2-5 days are in need in the measurement of SWCC; (2) 7 days is enough to determine a complete permeability function; (3) only 3 samples and 3-7 days are in need in the measurement of the shear strength envelope; (4) pore size/water distribution measurement technique is fast and recommended as a beneficial supplement to traditional test methods for unsaturated soils. Our findings suggest that by employing these proposed rapid testing methods, the measurement of pivotal properties for unsaturated soils can be accomplished within one week, thus significantly reducing the temporal and financial costs associated with experiments. The findings provide a reliable experimental approach for the rapid risk assessment of geological disasters induced by extreme climatic events.
Monitoring road subgrade settlement is crucial for maintaining pavement integrity, durability, and safety. It is important to understand the causes and mechanism of the settlement ahead of implementing monitoring methods, while few studies have examined the influencing factors comprehensively. On the other hand, there are many existing and emerging monitoring methods, such as In-SAR, GPR etc., each possessing different adaptability and accuracy level. There is a gap of knowledge about commons and differences among these methods in terms of working principle, data processing, precision level, as well as practicability. The objective of this paper is to provide reference of the state-of-the-art and state-of-the-practice of subgrade settlement monitoring methods for the engineers and researchers. A comprehensive literature review was conducted in the aspects of influencing factor, measurement method and advancements in monitoring subgrade settlement. A framework of joint monitoring system is proposed subsequently and suggestions for future studies are presented.
Landslides induced by freeze-thaw processes on grasslands are one of the major geohazards, and their scale and frequency are increasing as the global warms. Freeze-thaw induced landslides degrade surface vegetation and soil properties, reduce biodiversity, intensify landscape fragmentation, and lead to losses in economy, human and animal lives. Despite substantial progress in research on landslides, there has been little study focused on how ground freeze-thaw events affect landslides. By critically analyzing previous studies, this paper proposes a conceptual framework for the forms and types, development, dominant factors, monitoring techniques, and impact mechanisms of freeze-thaw induced landslides. Landslides are controlled by soil characteristics and topographic slope, which are major intrinsic determinants. Increased rainfall, rising temperatures, and thickening active layer due to climate change are all direct drivers of freeze-thaw induced landslides. Vegetation conditions, animal behavior interference, and wind erosion all affect the occurrence and development process of landslides by modifying vegetation cover, soil physical and chemical properties, and structure. Currently, landslide monitoring techniques have evolved rapidly with improved efficiency and accuracy, but with only few applications for freeze-thaw induced landslides. There are a variety of prediction models for landslides, but few consider freeze-thaw effects and lack field validation. The new perspective on the occurring types and dominant factors enhances theoretical understanding of the formation mechanisms, which helps further monitor and analysis of freeze-thaw induced landslides. Future studies should concentrate on the coupling mechanism of multiple factors and the development of an accurate prediction system, which will greatly benefit the understanding and early detection of freeze-thaw induced landslides.