Anthropogenic activities enhance the concentration of trace elements in environment like highly carcinogenic Cadmium (Cd), which adversely affect the plant growth and development. They deliberately accumulate defense compounds e.g., flavonoids, terpenoids, and alkaloids to ensure resilience in such adverse conditions. Current study explores the adaptive evolution, structural complexity, and functional roles of Flavin Adenine Dinucleotide (FAD)-linked oxidase genes in widespread leading cash crop cotton. As a non-edible, hyperaccumulator halophyte crop, cotton is an excellent candidate for phytoremediation of Cd-polluted soils by manipulating stress resistant genetic material. They utilize FAD as a cofactor to drive oxidative reactions, including benzylisoquinoline alkaloid biosynthesis, which plays a critical role in cellular signaling pathways, stress responses and metabolic processes. A total of 387 FADs retrieved from four cotton species were distributed into seven families and twelve subfamilies. They underwent large scale expansion under intense purifying selection with lineagespecific gene loss and retention, reflecting their ongoing evolution for functional advancements to adopt altering environment. High throughput transcriptomic, functional enrichment and qRT-PCR validation revealed their multifaceted roles in growth, development and stress responses. Overexpression of GhBBE59 (BBE7) in Arabidopsis enhanced Cd tolerance by 25 % marked by a 20% reduction in malondiadehyde (MDA) and 25 % higher superoxide dismutase (SOD) activity compared to wild type plants. While its knockdown in cotton, reduced Proline accumulation by 60 % and increased electrolyte leakage by 2 fold, rendering plants hypersensitity to Cd stress. Transcriptomic and biochemical analyses demonstrated that BBE7 modulates redox homeostasis via 25% higher glutathione accumulation and hormonal crosstalk, mitigating oxidative damage. Functional analyses further revealed the pivotal role of BBE7 in regulation of oxidative stress, antioxidant production, epigenetic modifications and proline accumulation, thereby enhancing stress resilience. These findings hold substantial promise for reducing cadmium accumulation in soils, thereby mitigating its entry into the food chain and associated health risks. The implications of current study extend beyond fundamental research, addressing real-world challenges associated with environmental stresses and sustainable agriculture practices by enabling safer cultivation in polluted environments.
The role of silicon in mitigating the incidence and damage of yellow stem borer in rice crops is well proven. However, the underlying mechanisms offered by silicon amendment in rice crops against yellow stem borer were not explored or poorly understood. Here, we have shown that silicon supplement to rice plants at 200 mg/kg of soil, improved silicification in stem tissues by increased length, width (18.1-32.5%), and area (6.6-14.2%) of silica cells and silicon content given over scanning electron microscopy and electron-dispersive spectrophotometric analysis. The increased activities of antioxidant and defense enzymes such as catalase (106-215%), superoxide dismutase (74.5%), peroxidase (52.1%), phenylalanine ammonia lyase (74%), and polyphenol oxidase (47.3%) in rice plants supplemented with silicon and infested with yellow stem borer at different durations were shown. The enhanced concentrations of total sugars (23.6%) and total phenols (18.4%) were also observed due to silicon supplement to rice plants. However, the defense enzyme activities were less in rice plants without silicon supplementation and yellow stem borer infestation. The outcome of the study highlighted the impact of silicon in activating the defense responses in rice plants infested with yellow stem borer. Silicon supplementation should be considered as one of the alternative and sustainable measures for integrated management of yellow stem borer in rice across ecosystems.
Salinity is a major abiotic stress that negatively affects agricultural land, significantly reducing crop yields. It alters the fundamental structure of the soil, causing a decrease in porosity, reduced aeration, and impaired water movement. Piriformospora indica, multifaceted fungi can enhance plant tolerance under abiotic stress conditions. The present study examined the effects of Piriformospora indica on the growth of Solanum melongena L. under saline conditions in a greenhouse, assessing parameters such as proline accumulation, lipid peroxidation, chlorophyll content, stomatal behavior, antioxidant activity, and phenotypic traits under salt stress Results of the present study showed significant improvement in phenotypic traits of Piriformospora indica colonized plants under saline conditions. Solanum melongena L. plants treated with 200 mM NaCl had swollen, deformed guard cells and closed stomata, while colonized plants maintained normal stomatal structure and their stomata remained open. Additionally, untreated plants exhibited higher malondialdehyde levels, indicating greater lipid peroxidation, while Piriformospora indica-colonized plants showed reduced oxidative damage, increased chlorophyll content, and enhanced peroxidase activity under saline conditions. The salt tolerance mediated by Piriformospora indica likely involves lipid desaturation, activation of antioxidant enzymes to counter reactive oxygen species, enhanced metabolism, improved nutrient uptake, proline accumulation, and increased phytohormone production.
High-Density Polyethylene (HDPE) PE is one of the primary contributors of long-lasting and prolonged pollution in the environment. In this study, more than three hundred marine isolates collected off the Gujarat Sea coast were tested for HDPE plastic utilizing ability. Among fifty-one positive noted isolates, RS124 as a potential strain was identified as Micrococcus flavus (accession is PP858228) based on 16 S rRNA gene sequencing and total cellular fatty acid profiling. Initial bacterial adherence on the film surface was shown in a scanning electron microscopy (SEM) image as a key step to biodegradation. Moreover, atomic force microscopy (AFM) shows that the film surface became more fragile, damaged, and rougher than untreated films. Shifts and alterations in peak transmittance with emergence of two new shouldered peak in degraded HDPE observed by fourier transform infrared spectroscopy (FTIR) was associated to chemical and mechanical alteration. Thermogravimetric analysis (TGA) analysis designated larger difference in percent weight loss provisions thermal instability. In the enzymatic study, the highest activity of peroxidase and dehydrogenase was recorded on the 3rd and 4th weeks of treatment with strain, respectively, during co-incubation. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis disclosed the presence of a distinct 19 kDa size protein, uncovering its role in the colonization of bacteria on the hydrophilic HDPE surfaces. About 1.8% weight reduction in HDPE was recorded as a result after 30 days of bio-treatment with M. flavus. Hence, the entire observed results reveal that the M. flavus RS124 could be effectively applied for the degradation of HDPE. This is the first report on M. flavus that it exhibits plastic degrading characteristic ever, which may allow for green scavenging of plastic waste.
Heavy metal pollution reduces the community of soil microorganisms, including fungi from the genus Trichoderma, which are plant growth promotors and biological control agents. Because of potential effects on crop productivity, the toxic effects of heavy metals (HMs) in Trichoderma are of interest. However, there have been few studies on the biochemical and molecular response to oxidation caused by exposure to copper (Cu), chromium (Cr), and lead (Pb) and whether this antioxidant response is species-specific. In this study, we compared the tolerance of Trichoderma asperellum and Trichoderma longibrachiatum to Cu, Pb, and Cr and evaluated the expression of genes related to the antioxidant response, including glutathione peroxidase (GPX), catalase (CAT), and cysteine synthase (CYS) as well as the activity of peroxidase and catalase. The isolates of Trichoderma were selected because we previously reported them as promotors of plant growth and agents of biological control. Our results revealed that, with exposure to the three HMs, the Trichoderma cultures formed aggregates and the culture color changed according to the metal and the Trichoderma species. The tolerance index (TI) indicated that the two Trichoderma species were tolerant of HMs (Cu > Cr > Pb). However, the TI and conidia production revealed that T. longibrachiatum was more tolerant of HMs than T. asperellum. The three HMs caused oxidative damage in both Trichoderma species, but the enzyme activity and gene expression were differentially regulated based on exposure time (72 and 144 h) to the HMs and Trichoderma species. The main changes occurred in T. asperellum; the maximum expression of the GPX gene occurred at 144 h in response to all three HMs, whereas the CAT gene was upregulated at 72 h in response to Cu but downregulated at 144 h in response to all three HMs. The CYS gene was upregulated in response to the three metals. The peroxidase activity increased with all three HMs, but the catalase activity increased with Cu and Pb at 72 h and decreased at 144 h with Pb and Cr. In T. longibrachiatum, the GPX gene was upregulated with all three HMs at 72 h, the CAT gene was upregulated only with Pb at 72 h and was downregulated at 144 h with HMs. Cr and Cu upregulated CYS gene expression, but expression did not change with Pb. The peroxidase activity increased with Cu at 144 h and with Cr at 72 h, whereas Pb decreased the enzyme activity. In contrast, catalase activity increased with the three metals at 144 h. In conclusion, T. longibrachiatum was more tolerant of Cu, Cr, and Pb than was T. asperellum, but exposure to all three HMs caused oxidative damage to both Trichoderma species. Peroxidases and catalases were activated, and the expression of the genes GPX and CYS was upregulated, whereas the CAT gene was downregulated. These findings indicate that the antioxidant response to HMs was genetically modulated in each Trichoderma species.
Per- and polyfluoroalkyl substances (PFAS) are a class of persistent organic pollutants that pose a growing threat to environmental and human health. Soil acts as a long-term reservoir for PFAS, potentially impacting soil biodiversity and ecosystem function. Earthworms, as keystone species in soil ecosystems, are particularly vulnerable to PFAS exposure. In this study, we investigated the sublethal effects of three short-chain (C4-C6) next-generation perfluoropropylene oxide acids (PFPOAs) on the earthworm Eisenia fetida, using a legacy perfluoroalkyl carboxylic acid (PFCA), perfluorooctanoic acid (PFOA), as a reference. We assessed a suite of biochemical endpoints, including markers for oxidative stress (catalase and superoxide dismutase activity), immunity (phenol oxidase activity), neurotoxicity (acetylcholinesterase activity), and behavioural endpoints (escape test). Results indicate that all tested PFAS, even at sub-micromolar concentrations, elicited significant effects across multiple physiological domains. Interestingly, HFPO-DA demonstrated the most substantial impact across all endpoints tested, indicating broad and significant biochemical and neurotoxic effects. Our findings underscore the potential risks of both legacy and emerging PFAS to soil ecosystems, emphasising the need for further research to understand the long-term consequences of PFAS contamination.
Fomesafen is a herbicide with long persistence in soil, causing damage to succeeding crops. Dichlormid is a widely used safener protecting maize from chloroacetanilide and thiocarbamate injury. We found that dichlormid treatment could restore the growth of wheat seedlings exposed to fomesafen stress. To explore its molecular mechanism, RNA-Seq was conducted to analysis transcript profiles between fomesafen and fomesafen+dichlormid treated wheat seedlings. The gene expression level was determined by qRT-PCR. Results showed that the up-regulated genes by dichlormid treatment were significantly enriched in pathways related to photosynthesis. The expression level of glutamyl-tRNA reductase (GTR), protoporphyrinogen IX oxidase (PPO, target of fomesafen), and magnesium chelatase (MAG) involved in chlorophyll biosynthesis was significantly up- regulated by dichlormid. And the expression level of genes in chlorophyll binding, energy biosynthesis, gibberellin biosynthesis and salicylic acid signal pathway was also validated to be significantly up-regulated by dichlormid. The detoxification enzyme activity of cytochrome P450 or glutathione S-transferase (GSTs), and their gene expression level was found to show no significant difference between fomesafen and fomesafen+dichlormid treatment. The antioxidant enzyme activity of peroxidase, superoxide, and the content malondialdehyde content was decreased by dichlormid, while the reduced glutathione content was increased by dichlormid significantly. The metabolism of fomesafen was further validated to be not influenced by dichlormid. These results suggested that dichlormid acted by increasing the expression of fomesafen target and photosynthesis related genes to alleviate fomesafen injury to wheat, but not accelerating fomesafen metabolism.
Antioxidant complex enzymes have a significant role in cellular homeostasis control in plants, and they inhibit the toxic action of reactive oxygen species when they are in excess. There are many antioxidant enzymes executing this role; among these, superoxide dismutase, catalase, and ascorbate peroxidase are reported as the most studied in this process, as they prevent free radicals from becoming more reactive and toxic to cells. Thus, this research was conducted to evaluate antioxidant enzyme expression in response to hydric stress at the reproductive stage in upland rice genotypes. Three genotypes from the upland rice breeding program on agreement between UFLA, EPAMIG, and EMBRAPA, CMG2093, CMG2172, and BRSMG Relampago, were used as controls. Genotypes were grown under field conditions with supplementary irrigation during the whole crop cycle, and hydric stress was induced in the reproductive phase before panicle emission. Seedlings were used in enzyme analyses from the emergence test and IVE on substrate (soil+sand at a 2:1 rate) at 70% and 10% field capacity. Significant differences were observed among genotypes for vigor tests. In biochemical tests, the CMG2093 genotype had lower damage on hydric deficit, with the best performance under hydric restriction conditions, being considered tolerant for this stress type.
Antioxidant responses play a crucial role in combating free radical damage induced by drought stress. In guar plants, the antioxidant mechanism is crucial for stress tolerance; however, the specific antioxidant response in individual guar genotypes remains unclear. This study investigates the physiological, biochemical, and transcriptional responses of four guar genotypes to drought stress by maintaining soil moisture content (SMC) at varying levels: control (100% FC), medium (60% FC), and severe (20% FC). Among the genotypes examined, HG-563 and HG-365 exhibit higher leaf relative water content (RWC) and total chlorophyll/carotenoid content, indicating lesser inhibition under drought stress compared to HG-75 and RGC-936. Notably, HG-563 and HG-365 demonstrate a significant increase in activities of key antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POD), ascorbate (AsA), and glutathione (GSH) during medium and severe drought stress conditions. This observation is further supported by in-gel activity assays revealing a notable upregulation of Cu/ZnSOD and POD isozymes, which is consistent with higher expression levels of Cu/ZnSOD and POD genes at the transcriptional level. Consequently, these results highlight the comparatively higher drought tolerance of HG-563 and HG-365 genotypes. The findings shed light on the activation of antioxidant responses in drought-tolerant guar genotypes under stress conditions, emphasizing the crucial role of antioxidant enzymes in the drought tolerance mechanism of guar plants.
Chromium (Cr) contamination in soils reduces crop yields and poses a remarkable risk to human and plant system. The main objective of this study was to observe the protective mechanisms of exogenously applied melatonin (Mel- 0.05, 0.1, and 0.15 mu M) in seedlings of Brassica juncea L. under Cr (0.2 mM) stress. This was accomplished by analysing the plant ' s morpho-physiological, biochemical, nuclear, membrane, and cellular characteristics, as well as electrolyte leakage. Superoxide, malondialdehyde, and hydrogen peroxide increased with Cr toxicity. Cr also increased electrolyte leakage. Seedlings under Cr stress had 86.4% more superoxide anion and 27.4% more hydrogen peroxide. Electrolyte leakage increased 35.7% owing to Cr toxicity. B. juncea L. cells with high radical levels had membrane and nuclear damage and decreased viability. Besides this, the activities of the antioxidative enzymes, as POD, APOX, SOD, GST, DHAR, GPOX and GR also elevated in the samples subjected to Cr toxicity. Conversely, the activity of catalase was downregulated due to Cr toxicity. In contrast, Mel reduced oxidative damage and conserved membrane integrity in B. juncea seedlings under Cr stress by suppressing ROS generation. Moreover, the activity of antioxidative enzymes that scavenge reactive oxygen species was substantially upregulated by the exogenous application of Mel. The highest concentration of Mel (Mel c- 0.15 mu M) applied showed maximum ameliorative effect on the toxicity caused by Cr. It causes alleviation in the activity of SOD, CAT, POD, GPOX, APOX, DHAR, GST and GR by 51.32%, 114%, 26.44%, 48.91%, 87.51%, 149%, 42.30% and 40.24% respectively. Histochemical investigations showed that Mel increased cell survival and reduced ROS-induced membrane and nuclear damage. The findings showed that Mel treatment upregulated several genes, promoting plant development. Its supplementation decreased RBOH1 gene expression in seedling sunder stress. The results supported the hypothesis that Mel concentrations reduce Cr-induced oxidative burst in B. juncea.