Against the backdrop of global warming, the increasing spatiotemporal variability in precipitation patterns has intensified the frequency and risk of dry-wet abrupt alternation (DWAA) events in semi-arid regions. This study investigates the Hailar River Basin in northern China (1980-2019) and develops the Soil Moisture Concentration Index (SMCI) using daily soil moisture (SM) data simulated by the VIC hydrological model. A high-resolution temporal framework is introduced to detect DWAA events and evaluate the impact of precipitation pattern variations on dry-wet transitions in the basin. The results indicate: (1) Annual precipitation in the basin has significantly increased (0.47 mm y(-1) in the south, P < 0.05), while precipitation intensity follows a gradient pattern, increasing in the upstream (3.65 mm d1 y1) and decreasing in the downstream (-2.34 mm y(-1)). Additionally, the number of dry days and short-duration, high-intensity precipitation events has risen; (2) Soil moisture (SM) data simulated by the VIC model effectively capture DWAA events, showing significantly higher | SMCI| values downstream than upstream (P < 0.05) and indicating more intense dry-wet transitions in the downstream region. Furthermore, 78 % of the area exhibits an increasing trend in |SMCI|(1980-2019), with dry-to-wet transition events occurring more frequently than wet-to-dry events. For instance, in 2013, the maximum coverage area reached 48 % in a single day; (3) The random forest model highlights the spatial heterogeneity of DWAA driving factors: upstream water yield is the dominant factor, whereas downstream variations are closely associated with precipitation intensity (R-2 = 0.76) and the frequency of heavy rainfall days. Permafrost degradation and land use changes further heighten hydrological sensitivity in the downstream region. This study offers a transferable methodological framework for understanding extreme hydrological events and reveals that the driving mechanisms of DWAA are spatially heterogeneous, shifting from being dominated by terrestrial factors in the headwaters to meteorological factors downstream-a finding with significant implications for water resource management in other large, heterogeneous semi-arid basins.
Understanding soil organic carbon (SOC) distribution and its environmental controls in permafrost regions is essential for achieving carbon neutrality and mitigating climate change. This study examines the spatial pattern of SOC and its drivers in the Headwater Area of the Yellow River (HAYR), northeastern Qinghai-Xizang Plateau (QXP), a region highly susceptible to permafrost degradation. Field investigations at topsoils of 86 sites over three summers (2021-2023) provided data on SOC, vegetation structure, and soil properties. Moreover, the spatial distribution of key permafrost parameters was simulated: temperature at the top of permafrost (TTOP), active layer thickness (ALT), and maximum seasonal freezing depth (MSFD) using the TTOP model and Stefan Equation. Results reveal a distinct latitudinal SOC gradient (high south, low north), primarily mediated by vegetation structure, soil properties, and permafrost parameters. Vegetation coverage and above-ground biomass showed positive correlation with SOC, while soil bulk density (SBD) exhibited a negative correlation. Climate warming trends resulted in increased ALT and TTOP. Random Forest analysis identified SBD as the most important predictor of SOC variability, which explains 38.20% of the variance, followed by ALT and vegetation coverage. These findings likely enhance the understanding of carbon storage controls in vulnerable alpine permafrost ecosystems and provide insights to mitigate carbon release under climate change.
The alpine ecosystems of the Qinghai-Tibet Plateau (QTP) provide multiple ecosystem services. In recent decades, these ecosystem services have been profoundly affected by climate change, human activity, and frozen ground degradation. However, related research remains lacking to date in the QTP. To address this gap, the upper reaches of the Shule River, a typical cryospheric-dominated basin in the QTP, was selected. We simultaneously assessed the spatial-temporal patterns and driving factors of ecosystem services, including habitat quality (HQ), net primary productivity (NPP), water conservation (WC), carbon storage (CS), water yield (WY), green space recreation (GSR), and total ecosystem service (TES), by employing the InVEST, CASA, and Noah-MP land surface models in combination with remote sensing and field survey data. Our results showed that: (1) HQ, NPP, WC, CS, WY, and GSR all increased significantly from 2001 to 2020 at rates of 0.004 a(-1), 1.920 g Cm(-2)a(-1), 0.709 mma(-1), 0.237 Mg & sdot;ha(-1)a(-1), 0.212 x 10(8) m(3)a(-1), and 0.038 x 10(9) km(2)a(-1) (P < 0.05), respectively; (2) warm and humid climates, combined with shrinking of barren, contributed to the increases in HQ, NPP, WC, CS, WY, and GSR; (3) frozen ground degradation had promoting effects on HQ, NPP, CS, GSR, and TES, while inhibiting effects were observed on WY and WC (P < 0.05); (4) synergies among ecosystem services were prominent over the past 20 years; (5) the total ecosystem service value increased significantly at a rate of 1.18 x 10(9) CNYa(-1) from 2001 to 2020 (P < 0.05), primarily due to the increase in the provisioning service value.
In light of a series of recent fatal landslides in Alaska, we set out to determine 1) the history of Alaskan landslides and 2) if the number of associated fatalities has increased with time. To answer our research questions, we searched a combination of 24 digital newspapers and online media sources, including historic digitized Alaskan newspapers, seeking landslides that affected people and/or infrastructure. This resulted in an inventory of 281 landslides occurring in Alaska since 1883. Our database includes the date on which the landslide occurred, its location and probable trigger, any reported injuries and/or fatalities, other reported damage, and the media source. Our inventory indicates that the number of reported landslides started to increase in the 1980's, and has increased dramatically in recent decades. We correlate the increase in landslides to a 1.2 degrees C to 3.4 degrees C increase in average annual air temperature and a 3% to 27% increase in precipitation over the last 50 years across Alaska. This change in climate is degrading permafrost, increasing the number of annual freeze/thaw events, and contributing to larger and more intense precipitation events - such as atmospheric rivers, all of which increase landslide susceptibility in various parts of the state. Alaska's last four fatal landslides occurred in Southeast Alaska, which has experienced the greatest increase in the number of landslides per capita. Our landslide database can serve as the initial inventory for analyses of landslides related to specific extreme weather events, as well as a resource to determine costs incurred from landslide-related damage.
The distribution and variation of active layer thickness (ALT) are crucial indicators for assessing the stability and environmental conditions of permafrost regions, which significantly impact regional hydrology, ecology, climate change, engineering construction, and disaster risk assessment. Based on the measured ALT data and Stefan equation, this study investigated the spatial distribution characteristics of ALT in the Tuotuo River region and explored the factors influencing its variability. The results showed that the ALT in the Tuotuo River area ranged from 0.15 to 5.18 m, with an average value of 2.65 m. The spatial distribution showed that the ALT was thinner in the southern region, which exhibited strong spatial heterogeneity, while the northeastern region generally had thicker ALT. Additionally, mountain areas tended to have thinner ALT, whereas plains showed thicker ALT. There was a good linear correlation between the simulated and measured ALT values, and the R 2 was up to 80%. The ALT in the Tuotuo River area was mainly controlled by air temperature and surface water thermal conditions. Among all factors, soil water content was identified as the key determinant. Topographic factors influenced ALT distribution and variation mainly through their impact on soil water content.
The practice of widening levees to mitigate frequent river flooding is globally prevalent. This paper addresses the pressing issue of sand-filled widened levee failures under the combined effect of heavy rainfall and high riverine water levels, as commonly observed in practice. The primary objective is to illuminate the triggering mechanism and characteristics of such levee failures using the well-designed physical model experiment and Material Point Method (MPM), thus guiding practical implementations. Experimentally, the macro-instability of the levee, manifested as slope failure within the sand-filled widened section, is primarily triggered by changes in the stress regime near the levee toe and continuous creep deformation. Upon failure initiation, the levee slope experiences a progressive failure mode, starting with local sliding, followed by global sliding, and ultimately transitioning into a flow-like behaviour, which characterises the slide-to-flow failure pattern. The slope failure along the interface between the original and new levees is the result of shear deformation rather than the cause. Parametric studies conducted using the calibrated MPM model reveal a critical threshold for the widening width, beyond which the volume of sliding mass and travel angle exhibit no further variation. Increasing the cohesion of the river sand used for levee widening demonstrates the most pronounced improvement in levee stability in the face of the combined effect of intense rainfall and elevated river levels. The MPM-based evaluation of common slope protection measures demonstrates the superior protective benefits of grouting reinforcement and impervious armour layer protection, providing valuable insights for reinforcement strategies in levee engineering applications.
Loose sandy soil layers are prone to liquefaction under strong earthquakes, causing damage to civil engineering structures inside or upon the liquefied ground. According to the present Japanese design guideline on liquefaction countermeasures for river levees, the entire depth of the liquefiable subsoil below river embankments should be improved. However, this approach is not economical against deep liquefiable subsoil. To rationalize the design approach, this contribution investigated the performance of a floating-type cement treatment method, in which only the shallower part of the liquefiable subsoil is reinforced. A series of centrifuge shaking table model tests was conducted under a 50g environment. The depth of improvement (cement treatment) was varied systematically, and the effect of the sloping ground was examined. The experimental results revealed that the settlements of river embankments can be reduced linearly by increasing the depth of improvement. Moreover, the acceleration of embankments can be reduced drastically by the vibration-isolation effect between the cement-treated soil and the liquefiable soil. These effects contribute to the safe retention of the embankment shape even when the liquefied sloping ground causes lateral flows. Towards practical implementation, discussions on the effect of permeability on cement-treated soil were expanded. Furthermore, the stress acting on cement-treated soil during shaking was measured using an acrylic block to explain the occurrence of cracks in the soil. (c) 2025 Japanese Geotechnical Society. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http:// creativecommons.org/licenses/by-nc-nd/4.0/).
Study region: Gandaki River basin in the central Himalayan region. Study focus: Spatiotemporal investigation of meteorological, agricultural, and hydrological droughts over historical (1986-2014) and future periods (2024-2100). New hydrological insights for the region: Historical analysis reveals that meteorological, agricultural, and hydrological droughts exhibit an insignificant increase in severity and duration. Agricultural and hydrological droughts are characterized by higher severity and longer duration compared to meteorological droughts. Regarding the impact of precipitation and temperature on agricultural drought severity, precipitation replenishes soil moisture in various ways across different elevation zones, thereby alleviating agricultural drought. Conversely, temperature primarily intensifies agricultural drought severity by reducing soil moisture through evaporation and transpiration. Glaciers play an important role in hydrological drought, with both precipitation and temperature helping to alleviate drought severity in subbasins containing glaciers. This phenomenon is particularly pronounced for subbasins with a glacier area ratio exceeding 10.5 %, showcasing a significant negative correlation between temperature and drought severity. Future projections show that meteorological and agricultural droughts, particularly in elevation zones below 3000 m, which cover 79.4 % of agricultural land, will become more severe and prolonged, threatening agricultural productivity. Climate change and glacier retreat are expected to increase hydrological droughts' severity and duration. These findings enhance understanding of drought evolution and highlight the urgent need for drought planning and management to protect socioeconomic development in the Central Himalaya.
Climate change impacts have destabilized the permafrost in the SRYY. This study developed a MODIS land surface temperature correction equation for the SRYY, analyzed permafrost variations over 2001-2020 using the Stefan equation, the Temperature at the Top of Permafrost model (TTOP) model, and the soil thermal conductivity parameterization scheme, and applied a structural equation model to identify permafrost change drivers. Leveraging the CMIP6 data, future active layer thickness (ALT) and permafrost distribution were projected under diverse scenarios. The main conclusions are as follows: The ALT in the SRYY thickened at a rate of 1.06 cm/year, with significant changes concentrated in the Tuotuo and Damqu River basins. In the future about 2100, under SSP245, the ALT in the SRYY will increase by about 30 cm compared with the historical period, and the permafrost area will reduce by a minimum of 2 x 104 km2 and a maximum of 12.3 x 104 km2. And under the SSP585, the ALT will thicken by about 60 cm, with an average decrease in permafrost area of 16.3 x 104 km2. High-altitude permafrost exhibited stronger responses to climate change, faster warming rates mainly led to this result. Variations in moisture conditions were another important cause, in which soil water content was a key factor, and the role of precipitation deserved more consideration.
The socio-economic growth of a nation depends heavily on the availability of adequate infrastructure, which relies on essential materials like river sand (RS) and cement. However, the rising demand for RS, combined with its excessive extraction causing ecological damage, and its increasing cost, has raised significant concerns. At the same time, the production of cement contributes significantly to environmental damage, especially through CO2 emissions. In this scenario geopolymer technology has emerged as a sustainable alternative to cement, offering environmental benefits and reducing the carbon footprint of construction materials. This study investigates the impact of replacing RS with copper slag (CS) and laterite soil (LS) in geopolymer mortar (GM) on key properties such as setting time, flowability, compressive strength, and microstructure. The results showed that as LS content increased, setting time and flowability decreased considerably, while increasing CS content caused a reduction in these values. Unlike the other observed parameters, the compressive strength values showed no distinct upward or downward trend. Moreover, the microstructural analysis, including SEM, EDS, XRD, FTIR, TGA and BET, provided valuable insights to support the observed results across various mix designs. Overall, the findings highlight that optimised binary blends of CS, LS and RS not only improved the compressive strength but also enhanced the microstructural characteristics of geopolymer mortar, reinforcing their potential as sustainable and high-performance alternatives to conventional fine aggregates.