共检索到 7

With global warming, the frequency and intensity of drought episodes are projected to increase worldwide, especially in the boreal forest. This represents a serious threat to the boreal forest ecosystem's productivity and environmental services. It is thus crucial to better understand how drought or water limitation could affect boreal forest ecosystems functioning, and to be prepared to overcome damage caused by drought events. Studies suggest that microbes may mitigate the negative effects of drought or water shortage on plants. However, most of these studies focused on soil microbes and on agricultural ecosystems. Here, we used a rainout shelters and soil irrigation experimental design to study the response to rain exclusion and soil water content of epiphytic phyllosphere bacterial communities associated with four boreal conifer tree species. Our results showed only a weak response of phyllosphere bacterial communities to variation in soil water content. On the other hand, host tree species identity and rain exclusion were the main drivers of epiphytic phyllosphere bacterial communities' structure and diversity. This suggests that fewer rain events, in the context of climate change, would impact boreal trees phyllosphere microbiome composition.

期刊论文 2025-04-01 DOI: 10.1016/j.foreco.2025.122554 ISSN: 0378-1127

Vegetation barriers are an important environmental characteristic of spent fuel road transportation accidents. Spent fuel vessels may be affected by force majeure factors during transportation, which leads to damage to spent fuel assemblies and containers and can cause radionuclides to gradually release from assemblies to vessels to the external environment. In this work, considering the growth periods of coniferous vegetation barriers and vessel type, a radionuclide dispersion model based on computational fluid dynamics (CFD) was established by adding a decay term and a pressure loss term. The simulations showed that, first, compared to the small (Type-II) vessel, the effects of fluid flow around the large vessel (Type-I) have a more significant impact on radionuclide dispersion. The backflow around the Type-I vessel causes leaked radionuclides to disperse towards the vessel, and the larger the vessel is, the more significant the rise of the leaked radionuclide plume tail will be due to the increased negative pressure gradient area. Moreover, the area contaminated exceeding the maximum allowable concentration by radioactivity for the Type-I vessel is reduced gradually with the growth of coniferous vegetation barriers due to the weakening of the backflow effect by growing vegetation. Second, compared to vegetation barriers of 15 years and 23 years, the horizontal distance exceeding the maximum allowable concentration of the leaked I-131 dispersion from Type II vessels near vegetation barriers for 12 years is the longest. The older the vegetation barrier is, the shorter the horizontal dispersion range, and the shape of radionuclide dispersion gradually transforms from flat to semicircular with vegetation barrier growth, but this could cause a greater radioactive accumulation effect near the leakage point, and the maximum concentration of leaked I-131 reached 0.54 kBq center dot m(-3) for leaked radionuclides from the Type II vessel under vegetation barriers of 23 years. In addition, improvement suggestions based on the proposed method are presented, which will enable the Standards Institutes to apply the research methodologies described herein across various scenarios. Environmental Implication: Compared to nonradioative pollutants, radioactive pollutants are intercepted by vegetation barriers and then migrate to the soil through leaves, stems, and roots, which can contaminate the surrounding environment. Considering the effects of vessel type and coniferous vegetation growth, a radionuclide dispersion model based on CFD was established. Suggestions for decontaminating radioactive pollution areas have been proposed based on the simulation results of hypothetical scenarios. The scenario applicability improvements based on the proposed model could assist relevant Standards Institutes to making improving measures.

期刊论文 2024-12-05 DOI: 10.1016/j.jhazmat.2024.135397 ISSN: 0304-3894

In response to the decline of Central European spruce monocultures driven by various factors, the Demonstration Object of Reconstruction of Spruce Forests (DORS) was established in Hus & aacute;rik locality, Javorn & iacute;ky Mts., northwestern Slovakia. The area includes the Hus & aacute;rik trial site, where the applicability and efficiency of different artificial regeneration methods are studied. The trial was established on a 24-ha area cleared following the outbreak of spruce bark beetles in 2011. Its altitude is 800 m a.s.l., aspect NW, slope 30%, the soil is Ranker on the soft flysch sandstone bedrock. Our study covered 4 conifers - Norway spruce (spruce), European larch (larch), silver fir (fir), and Douglas fir (doug fir). Each species was regenerated using 4 different approaches: planting of commercial bareroot transplants (BR), planting of container transplants (CON), direct seeding (DS) and vegetative cell seeding using seed shelters (VCS). Results concerning the nine-year development of transplants and seedlings, along with the calculation of cost-efficiency, are presented. As to the species, BR and CON transplants of spruce and larch reached the best survival and height. The DS larch was the most cost-efficient method of establishment of a successfully established plantation (survival > 50%; stem height > 2/3 of the weed height; ratio of damaged individuals < 50%) with a total cost of 2 372 EURha(-1). On the contrary, the slow initial growth of fir and Douglas fir and their extensive damage resulted in the incomparably higher cost of establishment of their successfully established plantation, such as 4 980 EURha(-1) for five-years-old BR fir transplants. Our findings documented that current efforts related to the restoration of salvage-felled clearings remained difficult, especially in the case of introduction or reestablishment of coniferous tree species more vulnerable to open site conditions.

期刊论文 2024-01-01 DOI: 10.17221/1/2024-JFS ISSN: 1212-4834

In northern boreal forests the warming winter climate leads to more frequent snowmelt, rain-on-snow events and freeze-thaw cycles. This may be harmful or even lethal for tree seedlings that spend even a half of the year under snow. We conducted a snow cover manipulation experiment in a natural forest to find out how changing snow conditions affect young Scots pine (Pinus sylvestris L.) seedlings. The ice encasement (IE), absence of snow (NoSNOW) and snow compaction (COMP) treatments affected ground level temperature, ground frost and subnivean gas concentrations compared to the ambient snow cover (AMB) and led to the increased physical damage and mortality of seedlings. The expression responses of 28 genes related to circadian clock, aerobic and anaerobic energy metabolism, carbohydrate metabolism and stress protection revealed that seedlings were exposed to different stresses in a complex way depending on the thickness and quality of the snow cover. The IE treatment caused hypoxic stress and probably affected roots which resulted in reduced water uptake in the beginning of the growing season. Without protective snowpack in NoSNOW seedlings suffered from cold and drought stresses. The combination of hypoxic and cold stresses in COMP evoked unique transcriptional responses including oxidative stress. Snow cover manipulation induced changes in the expression of several circadian clock related genes suggested that photoreceptors and the circadian clock system play an essential role in the adaptation of Scots pine seedlings to stresses under different snow conditions. Our findings show that warming winter climate alters snow conditions and consequently causes Scots pine seedlings various abiotic stresses, whose effects extend from overwintering to the following growing season.

期刊论文 2022-12-09 DOI: 10.3389/fpls.2022.1050903 ISSN: 1664-462X

Recent climatic changes significantly affected forest ecosystems in northern Eurasia. Trees growing in Siberia are very sensitive to climate change due to strong temperature limitation of their growth. Our study covers high-latitude (northeastern Yakutia, eastern Taimyr, central Evenkia) and high-altitude (Russian Altai) zones in Eurasia, where tree-ring parameters (tree-ring width, cell-wall thickness, and maximum latewood density) mainly record summer air temperature variations. To reveal the impact of moisture changes (e.g., amount of precipitation, vapor pressure deficit, relative humidity and potential evapotranspiration) on tree growth in Siberian forest ecosystems, we evaluated delta C-13 in tree-ring cellulose over the past century. We found that at all the study sites mainly June-July precipitation and June-July evapotranspiration affect larch radial growth, while the strongest influence of vapor pressure deficit on the delta C-13 was observed in northeastern Yakutia. Further increase of vapor pressure deficit and rise of air temperature in the coming decades in Siberian regions will probably lead to drought and related forest mortality even under additional source of water due to permafrost thaw.

期刊论文 2021-09-01 DOI: 10.1134/S1067413621050052 ISSN: 1067-4136

Conifer mountain forests influence numerous human populations by providing a host of critical economic, sociological, and ecosystem services. Although the causes of the elevational, transitional boundaries of these forests (i.e., upper and lower timberlines) have been questioned for over a century, these investigations have focused predominately on the growth limitations of saplings or mature trees at the upper alpine boundary. Yet, the elevational movement of timberlines is dependent initially on new seedling establishment in favorable microsites that appear to be generated by ecological facilitation. Recent evidence suggests that this facilitation is critical during the initial 1-2 years of growth when survival may be less than a few percent, only cotyledons are present, and survival occurs only in favorable microsites created by inanimate objects (e.g., boulders, dead stems), microtopography, or already established vegetation. Dramatic changes in tree form (e.g., krummholz mats) across the timberline ecotone also plays an important role in generating microsite facilitation. These favorable, facilitated microsites have been characterized broadly as experiencing low sky exposure during summer (day and night) and leeward wind exposure during winter that generates protective snow cover, all of which are needed for new seedling survival. Thus, determining the specific microclimate and edaphic characteristics of favorable microsites, and their frequency at timberline, will provide a more mechanistic understanding and greater predictability of the future elevation and extent of conifer mountain forests. In addition, although the ecophysiological advantages of a needle-like leaf morphology is well established for adult conifer trees, the advantage of this phylogenetically unique trait in emergent seedlings has not been thoroughly evaluated. Understanding seedling ecophysiology and the functional morphology that contributes to survival, plus the nature and frequency of favorable microsites at timberline, will enable more reliable estimates of future elevational shifts in conifer mountain forests. This approach could also lead to the development of a valuable and sensitive tool for forest managers interested in evaluating future changes in these forests under increased large-scale infestation and drought mortality, as well as for current scenarios of predicted climate change.

期刊论文 2019-04-24 DOI: 10.3389/ffgc.2019.00009

The boreal forest accounts for approximately 22% of the Northern Hemisphere landmass with nearly 40% of this huge biome growing on continuously frozen soils. Projected climate change leading to degradation of permafrost and increasing drought situation at high latitudes in Eurasia will seriously affect productivity of forests on permafrost. Here we present the results of an on-going research of tree radial growth in the midst of the permafrost zone in Siberia, Russia (Tura region, 64 degrees N, 100 degrees E, 140-610 m a.s.1.). Tree-ring width and density chronologies of Gmelin larch and Siberian spruce from a great variety of sites characterized by different thermo-hydrological regime of soils are analyzed. The obtained results reveal that current tree radial growth and tree-ring structure in permafrost region in Siberia are largely dependent on local site conditions and may be constrained by low air and soil temperatures as well as soil water availability. Varying climatic responses and seasonal radial growth of trees at different habitats indicate a range of possible scenarios of further development of northern larch stands. Forest fire is another important factor strongly affecting tree stand dynamics and forest ecosystem functioning in the continuous permafrost zone. Analysis of tree-ring parameters indicate that post-fire dynamics of tree-ring structure is in accordance with the changes in habitat conditions caused by removal by fire and then gradual recovery of ground vegetation resulting in an alteration in soil active layer depth. In general, the results of this multi-proxy analysis for trees growing under various conditions in the continuous permafrost zone in Siberia allow assumptions about changes in tree productivity, stand dynamics and therefore carbon uptake under projected climate change and permafrost degradation.

期刊论文 2016-01-01 ISSN: 1314-2704
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-7条  共7条,1页