This study investigates black carbon (BC) concentrations in the seasonal snowpack on the Godwin-Austen Glacier and in surface snow at K2 Camps 1 and 2 (Karakoram Range), assessing their impact on snowmelt during the 2019 ablation season. Potential BC and moisture sources were identified through back-trajectory analysis and atmospheric reanalyses. Variations in water stable isotopes (delta 1(8)O and delta 2H) in the snowpack were analysed to confirm its representativeness as a climatic record for the 2018-19 accumulation season. The average BC concentration in the snow pits (12 ng g-1) generated 66 mm w.e. (or 53 mm w.e. excluding the basal zone) of meltwater. Surface snow at K2 Camp 1 showed BC concentrations of 7 ng g-1, consistent with those on the snowpack surface, suggesting it may reflect local BC levels in late February 2019. In contrast, higher concentrations at K2 Camp 2 (26 ng g-1) were potentially linked to expedition activities.
The Tian Shan mountain range, known as the water towers of Central Asia, plays a key role in local water supply, yet large uncertainties remain about the amount of water that is stored in its glaciers. In this study, we assess the impact of the boundary conditions on ice thickness estimates using two inversion models: a mass conservation (MC) model and a basal shear stress (BS) model. We compare the widely used Randolph Glacier Inventory version 6 with the updated Glacier Area Mapping for Discharge from the Asian Mountains glacier inventory, as well as two digital elevation models (SRTM DEM and Copernicus DEM). The results show that the ice volume (in similar to 2000 CE) in the Tian Shan range is 661.0 +/- 163.5 km(3) for the MC model and 552.8 +/- 85.3 km(3 )for the BS model. There are strong regional differences due to inventory, especially for glaciers in China (17-25%). However, the effect of different DEM sources on ice volume estimation is limited. By the end of the 21st century, the projected mass loss differences between inventories are higher than between adjacent emission scenarios, illustrating the vital importance of high-quality inventories. These differences should be carefully considered during water resource planning.