Nonaqueous Contact-Electro-Chemistry via Triboelectric Charge

Mechanochemistry revolutionizes traditional reactions through mechanical stimulation, but its reaction efficiency is limited. Recent advancements in utilizing triboelectric charge from liquid−solid contact electrification (CE) have demonstrated significant potential in improving the reaction efficiency. However, its efficacy remains constrained by interfacial electrical double-layer screening in aqueous solutions. This study pioneered chemistry in nonaqueous systems via CE for catalysis and luminescence. Density functional theory simulations and experiments revealed varying electron transfer capabilities and chemoselectivity of CE across different solvents. Phenol degradation via CE in dimethyl sulfoxide (DMSO) exhibited a rate over 40 times faster than that of traditional mechano-driven chemistry. A more intuitive comparison revealed that CE degradation of phenol in DMSO exhibits a 30-fold rate improvement compared to deionized water, where the degradation remains incomplete. Luminol oxidation by radicals generated solely via CE in DMSO eliminates the dependence on traditional catalysts and side reactions, establishing a pure and simple system for investigating the reaction mechanisms. A high and stable luminescence characteristic was maintained for 3 months, enhancing the imaging accuracy and stability exponentially. This study underscores the impact of triboelectric charge on reaction efficiency and chemoselectivity, establishing a new paradigm in nonmetal catalysis, mechanoluminescence, and providing profound insights into reaction kinetics.

相关文章

  • MXene-Reinforced Spiral Yarns for Multimodal Triboelectric Nanogenerators and Wearable Interactive Interfaces
    [Soo Young Cho, Yao Xiong, Haishuang Jiao, Dong Hae Ho, Jiahong Yang, Chao Liu, Seonkwon Kim, Liang Wei, Zhong Lin Wang, Qijun Sun, Jeong Ho Cho]
  • A Multifunctional Power Textile Based on Interfacial Electrostatic Breakdown
    [Lixia He, Yikui Gao, Shuncheng Yao, Di Liu, Xiang Zhang, Tianmei Lv, Linlin Li, Baofeng Zhang, Zhong Lin Wang, Jie Wang]
  • Efficient pedestrian-level wind energy harvesting using a hybridized technology
    [Gao Yu, Pengfei Ji, Xiaobo Gao, Tengfei Zhou, Shengbo Wang, Wei Gao, Hao Li, Zhong Lin Wang, Baodong Chen]
  • qq

    成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    ex

    成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    yx

    成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    ph

    成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    广告图片

    润滑集