Multimodal Finger-Shaped Tactile Sensor for Multi-Directional Force and Material Identification

Multimodal tactile perception is crucial for advancing human–computer interaction, but real-time multidimensional force detection and material identification remain challenging. Here, a finger-shaped tactile sensor (FTS) based on the triboelectric effect is proposed, capable of multidirectional force sensing and material identification. The FTS is composed of an external material identification and an internal force sensing section. Three materials are embedded into the surface of the silicone shell in the fingerpad, forming single-electrode sensors for material identification. In the force sensing section, the silicone shell's outer surface is coated with conductive silver paste as a shielding layer. The inner wall has four silicone microneedle arrays and a silicone bump, while five silver electrodes are coated on the internal polylactic acid skeleton. The components connect via interlocking structures near the fingernail, allowing localized contact and separation between the silicone shell and skeleton, enabling force direction detection through signals from the five electrodes. Additionally, the outer sensors achieve 98.33% accuracy in recognizing 12 materials. Furthermore, integrated into a robotic hand, the FTS enables real-time material identification and force detection in an intelligent sorting environment. This research holds great potential for applications in tactile perception for intelligent robotics.

相关文章

  • MXene-Reinforced Spiral Yarns for Multimodal Triboelectric Nanogenerators and Wearable Interactive Interfaces
    [Soo Young Cho, Yao Xiong, Haishuang Jiao, Dong Hae Ho, Jiahong Yang, Chao Liu, Seonkwon Kim, Liang Wei, Zhong Lin Wang, Qijun Sun, Jeong Ho Cho]
  • A Multifunctional Power Textile Based on Interfacial Electrostatic Breakdown
    [Lixia He, Yikui Gao, Shuncheng Yao, Di Liu, Xiang Zhang, Tianmei Lv, Linlin Li, Baofeng Zhang, Zhong Lin Wang, Jie Wang]
  • Efficient pedestrian-level wind energy harvesting using a hybridized technology
    [Gao Yu, Pengfei Ji, Xiaobo Gao, Tengfei Zhou, Shengbo Wang, Wei Gao, Hao Li, Zhong Lin Wang, Baodong Chen]
  • qq

    成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    ex

    成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    yx

    成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    ph

    成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    广告图片

    润滑集