Machining-induced textures featuring plowing-generated grooves show wavelength variations dependent on cutting precision and feed rates, which may influence tribological performance. In this study, a mixed elastohydrodynamic (EHL) model was developed through the systematic integration of critical tribological parameters, including contact geometry, elastic deformation, lubricant properties, and thermal transport properties. The roughness is simplified using a sinusoidal function. Through extensive numerical analysis, we found that the film thickness and friction coefficient exhibited a strong non-linear relationship with changes in the texture density of the contact surface. Both lubrication and friction deteriorated in a non-monotonic manner. This mechanism was attributed to changes in the inlet micro-topography caused by variations in texture density and the number of sinusoidal asperities actively participating in contact. Additionally, lubrication and friction characteristics under different distribution scales were analyzed with variations in speed, load, and slide-roll ratio (SRR). The simulations showed that the scale effect of surface texture weakened under high-speed and heavy-load conditions, whereas it became more pronounced under low-speed and light-load conditions.
周老师: 13321314106
王老师: 17793132604
邮箱号码: lub@licp.cas.cn