共检索到 445

Black carbon (BC) mixed with non-BC components strongly absorbs visible light and leads to uncertainty in assessing the absorption enhancement (Eabs) and thus radiative forcing. Traditional Single-Particle Soot Photometer (SP2) combined with the leading-edge only fitting (the only-SP2 method) derives BC's mixing states through Mie scattering calculations. However, errors exist in retrieved optical diameter (Dopt) and MR due to the assumption of the ideal spherical core-shell structure and the selection of the calculation parameters like density and refractive index (RI) of the components. Here, we employed a custom-developed tandem CPMA-SP2 system, which classifies fixed-mass BC to characterize the mixing state, then compared with the only-SP2 method in quantifying the mixing state and Eabs. The field measurements show that the SP2 demonstrates variability in assessing the mixing state of BC in different aging states. The thickly-coated particles with small core approaching the internally mixed state are more sensitive to the change of calculated RI. The Dopt decreases with the RI increasing, indicating that this method accurately measures both Dopt and Eabs when a reasonable refractive index is selected for calculation. However, for thinly-coated particles with moderate or large core, this method results in significant deviations in the computed Eabs (errors up to 15 %). These deviations may be caused by the various shapes of BC and systematic errors. Our results provide valuable insights into the accuracy of the SP2-retrieved Dopt and MR based on Mie calculations and highlight the importance of employing advanced techniques for further assessment of BC's mixing state.

期刊论文 2026-03-01 DOI: 10.1016/j.jes.2025.06.010 ISSN: 1001-0742

Slope failures resulting from thaw slumps in permafrost regions, have developed widely under the influence of climate change and engineering activities. The shear strength at the interface between the active layer and permafrost (IBALP) at maximum thawing depth is a critical factor to evaluate stability of permafrost slopes. Traditional direct shear, triaxial shear, and large-scale in-situ shear experiments are unsuitable for measuring the shear strength parameter of the IBALP. Based on the characteristics of thaw slumps in permafrost regions, this study proposes a novel test method of self-weight direct shear instrument (SWDSI), and its principle, structure, measurement system and test steps are described in detail. The shear strength of the IBALP under maximum thaw depth conditions is measured using this method. The results show that under the condition that the permafrost layer is thick underground ice and the active layer consists of silty clay with 20% water content, the test results are in good agreement with the results of field large-scale direct shear tests and are in accordance with previous understandings and natural laws. The above analysis indicates that the method of the SWDSI has a reliable theoretical basis and reasonable experimental procedures, and meets the needs of stability assessment of thaw slumps in permafrost regions. The experimental data obtained provide important parameter support for the evaluation of related geological hazards.

期刊论文 2026-01-15 DOI: 10.1016/j.measurement.2025.118845 ISSN: 0263-2241

Here, we present the result of different models for active layer thickness (ALT) in an area of the Italian Central Alps where a few information about the ALT is present. Looking at a particular warm year (2018), we improved PERMACLIM, a model used to calculate the Ground Surface Temperature (GST) and applied two different versions of Stefan's equation to model the ALT. PERMACLIM was updated refining the temporal basis (daily respect the monthly means) of the air temperature and the snow cover. PERMACLIM was updated also to minimize the bias of the snow cover in summer months using the PlanetScope images. Moreover, the contribution of the solar radiation was added to the air temperature to improve the summer GST. The modelled GST showed a good calibration and, among the two versions of Stefan's equation, the first (ALT1) indicates a maximum active layer thickness of 7.5 m and showed a better accuracy with R2 of 0.93 and RMSE of 0.32 m. The model underlined also the importance of better definition of the thermal conductivity of the ground that can strongly influence the ALT.

期刊论文 2026-01-15 DOI: 10.1016/j.coldregions.2025.104762 ISSN: 0165-232X

On December 18, 2023, a magnitude MS6.2 earthquake struck Jishishan County, Gansu Province, triggering over 40 seismic subsidence sites within a seismic intensity VI zone, 32 km from the epicenter.The earthquake caused tens of millions in economic losses to mountain photovoltaic power stations. Extensive geological surveys and comparisons with similar landslides (such as soil loosening, widespread cracks, and stepped displacements) triggered by the 1920 Haiyuan MS8.5 earthquake and the 1995 Yongdeng MS5.8 earthquake, this study preliminarily identifies one subsidence sites as a seismic-collapsed loess landslide. To investigate its disaster-causing mechanism: the dynamic triaxial test was conducted to assess the seismic subsidence potential of the loess at the site, and the maximum subsidence amount under different seismic loads were calculated by combining actual data from nearby bedrock stations with site amplification data from the active source; simulation of the destabilization evolution of seismic-collapsed loess landslides by large-scale shaking table tests; and a three-dimensional slope model was developed using finite element method to study the complex seismic conditions responsible for site damage. The research findings provide a theoretical foundation for further investigations into the disaster mechanisms of seismic-collapsed loess landslides.

期刊论文 2025-12-31 DOI: 10.1080/19475705.2025.2457997 ISSN: 1947-5705

Thawing-triggered slope failures and landslides are becoming an increasing concern in cold regions due to the ongoing climate change. Predicting and understanding the behaviour of frozen soils under these changing conditions is therefore critical and has led to a growing interest in the research community. To address this challenge, we present the first mesh-free smoothed particle hydrodynamics (SPH) computational framework designed to handle the multi-phase and multi-physic coupled thermo-hydro-mechanical (THM) process in frozen soils, namely the THM-SPH computational framework. The frozen soil is considered a tri-phase mixture (i.e., soil, water and ice), whose governing equations are then established based on u-p-T formulations. A critical-state elasto-plastic Clay and Sand Model for Frozen soils (CASM-F), formulated in terms of solid-phase stress, is then introduced to describe the transition response and large deformation behaviour of frozen soils due to thawing action for the first time. Several numerical verifications and demonstrations highlight the usefulness of this advanced THM-SPH computational framework in addressing challenging problems involving thawing-induced large deformation and failures of slopes. The results indicate that our proposed single-layer, fully coupled THM-SPH model can predict the entire failure process of thawing-induced landslides, from the initiation to post-failure responses, capturing the complex interaction among multiple coupled phases. This represents a significant advancement in the numerical modelling of frozen soils and their thawing-induced failure mechanisms in cold regions.

期刊论文 2025-11-01 DOI: 10.1016/j.cma.2025.118252 ISSN: 0045-7825

The direct radiative impact of atmospheric aerosols remains more uncertain than that of greenhouse gases, largely due to the complex transformations' aerosols undergo during atmospheric aging. Sulfate aerosols have been the subject of considerable research, with a robust body of literature characterising their cooling effect. In contrast, the light-absorbing properties and warming potential of black carbon and related products remain less well understood, with limited research available to date. The present study examines the iron-catalyzed reaction of catechol in levitated microdroplets, tracked in situ using elastic light scattering spectroscopy. The reaction forms water-insoluble polycatechol aggregates, which drive a transition from homogeneous spheres to heterogeneous droplets with internal inclusions. To interpret the evolving optical behaviour, the Multiple Sphere T-Matrix (MSTM) model is employed, a method which overcomes the limitations of Mie theory by accounting for internal morphological complexity. The model provides realistic complex refractive indices and fractal parameters, though it should be noted that its solutions are not unique due to sensitivity to input assumptions and droplet variability. This underscores the necessity for supplementary measurements and more comprehensive models incorporating evaporation, chemical dynamics, and phase transitions. These findings emphasise the potential of elastic scattering spectroscopy for real-time monitoring of multiphase chemistry and offer new constraints for improving aerosol aging schemes in climate models, thereby contributing to reduced uncertainties in aerosol radiative forcing.

期刊论文 2025-11-01 DOI: 10.1016/j.jaerosci.2025.106659 ISSN: 0021-8502

Highlights What are the main findings? Permafrost in the Muri area responded to human disturbance without significant spatial expansion during 2000-2024. The semi-arid climate, rough terrain, thin root zone and gappy vertical structure underneath were the major factors. What are the implications of the main findings? Annual ALT estimated from 2000 to 2024 filled the data gap of high-resolution ALT in the Muri area. Knowledge was provided for a better understanding of alpine permafrost development.Highlights What are the main findings? Permafrost in the Muri area responded to human disturbance without significant spatial expansion during 2000-2024. The semi-arid climate, rough terrain, thin root zone and gappy vertical structure underneath were the major factors. What are the implications of the main findings? Annual ALT estimated from 2000 to 2024 filled the data gap of high-resolution ALT in the Muri area. Knowledge was provided for a better understanding of alpine permafrost development.Abstract Alpine permafrost plays a vital role in regional hydrology and ecology. Alpine permafrost is highly sensitive to climate change and human disturbance. The Muri area, which is located in the headwaters of the Datong River, northeast of the Tibetan Plateau, has undergone decadal mining, and the permafrost stability there has attracted substantial concerns. In order to decipher how and to what extent the permafrost in the Muri area has responded to the decadal mining in the context of climate change, daily MODIS land surface temperatures (LSTs) acquired during 2000-2024 were downscaled to 30 m x 30 m. The active layer thickness (ALT)-ground thaw index (DDT) coefficient was derived from in situ ALT measurements. An annual ALT of 30 m x 30 m spatial resolution was subsequently estimated from the downscaled LST for the Muri area using the Stefan equation. Validation of the LST and ALT showed that the root of mean squared error (RMSE) and the mean absolute error (MAE) of the downscaled LST were 3.64 degrees C and -0.1 degrees C, respectively. The RMSE and MAE of the ALT estimated in this study were 0.5 m and -0.25 m, respectively. Spatiotemporal analysis of the downscaled LST and ALT found that (1) during 2000-2024, the downscaled LST and estimated ALT delineated the spatial extent and time of human disturbance to permafrost in the Muri area; (2) human disturbance (i.e., mining and replantation) caused ALT increase without significant spatial expansion; and (3) the semi-arid climate, rough terrain, thin root zone and gappy vertical structure beneath were the major controlling factors of ALT variations. ALT, estimated in this study with a high resolution and accuracy, filled the data gaps of this kind for the Muri area. The ALT variations depicted in this study provide references for understanding alpine permafrost evolution in other areas that have been subject to human disturbance and climate change.

期刊论文 2025-10-19 DOI: 10.3390/rs17203482

The Arctic has been warming much faster than the global average, known as Arctic amplification. The active layer is seasonally frozen in winter and thaws in summer. In the 2017 Arctic Boreal Vulnerability Experiment (ABoVE) airborne campaign, airborne L- and P- band synthetic aperture radar (SAR) was used to acquire a dataset of active layer thickness (ALT) and vertical soil moisture profile, at 30 m resolution for 51 swaths across the ABoVE domain. Using a thawing degree day (TDD) model, ALT=K root TDD, we estimated ALT along the ABoVE swaths employing the 2-m air temperature from ERA5. The coefficient (K) calibrated has an R2=0.9783. We also obtained an excellent fit between ALT and K root(TDD/theta) where theta is the soil moisture from ERA5 (R2=0.9719). Output based on shared-social economic pathway (SSP) climate scenarios SSP 1-2.6, SSP 2-4.5, and SSP 5-8.5 from seven global climate models (GCMs), statistically downscaled to 25-km resolution, was used to project the impacts of climate warming on ALT. Assuming ALT=K root TDD, the projections of UKESM1-0-LL GCM resulted in the largest projected ALT, up to about 0.7 m in 2080s under SSP5-8.5. Given that the mean observed ALT of the study sites is about 0.482 m, this implies that ALT will increase by 0.074 to 0.217 m (15% and 45%) in 2080s. This will have substantial impacts on Arctic infrastructure. The projected settlement Iset (cm) of 1 to 7 cm will also impact the infrastructure, especially by differential settlement due to the high spatial variability of ALT and soil moisture, given at local scale the actual thawing will partly depend on thaw sensitivity of the material and potential thaw strain, which could vary widely from location to location.

期刊论文 2025-10-01 DOI: 10.1061/JHYEFF.HEENG-6485 ISSN: 1084-0699

Permafrost is both a product of climate change and an indicator of its progression. Rising air temperature has led to permafrost degradation, resulting in the melting of ground ice and the release of carbon to the atmosphere, creating a positive feedback loop. Extreme weather events, particularly extreme rainfall, have been increasing, yet the effects of extreme rainfall on permafrost remain unclear. Here, we use long-term observational data to investigate the effects of extreme rainfall on the hydrothermal properties of the active layer at two sites in China's upper Heihe River Basin, EBoA and PT5. Two methods are applied: hierarchical linear regression and a relative variation ratio. The results for both sites indicate that when rainfall exceeds 10 mm, soil temperatures increase. This suggests warming effects of extreme rainfall on the active layer that maybe attributable to reduced heat loss from decreased actual evapotranspiration, as well as increased thermal conductivity and heat transfer due to elevated soil moisture during extreme rainfall events. Future studies investigating the effects of extreme rainfall via irrigation experiments and physical modeling could benefit our results as a reference for the design of controlled experiments.

期刊论文 2025-09-01 DOI: 10.1029/2025JD043541 ISSN: 2169-897X

Small modular reactors (SMRs) are an alternative for clean energy solutions in Canada's remote northern communities, owing to their safety, flexibility, and reduced capital requirements. Currently, these communities are heavily reliant on fossil fuels, and the transition to cleaner energy sources, such as SMRs, becomes imperative for Canada to achieve its ambitious net-zero emissions target by 2050. However, applying SMR technology in permafrost regions affected by climate change presents unique challenges. The degradation of permafrost can lead to significant deformations and settlements, which can result in increased maintenance expenses and reduced structural resilience of SMR infrastructure. In this paper, we studied the combined effect of climate nonstationarity in terms of ground surface temperature and heat dissipation from SMR reactor cores for the first time in two distinct locations in Canada's North: Salluit in Quebec and Inuvik in the Northwest Territories. It was shown that these combined effects can make significant changes to the ground thermal conditions within a radius of 15-20 m around the reactor core. The change in the ground thermal conditions poses a threat to the integrity of the permafrost table. The implementation of mitigation strategies is imperative to maintain the structural integrity of the nuclear infrastructure in permafrost regions. The thermal modeling presented in this study paves the way for the development of advanced coupled thermo-hydromechanical models to examine the impact of SMRs and climate nonstationarity on permafrost degradation.

期刊论文 2025-09-01 DOI: 10.1061/JCRGEI.CRENG-804 ISSN: 0887-381X
  • 首页
  • 1
  • 2
  • 3
  • 4
  • 5
  • 末页
  • 跳转
当前展示1-10条  共445条,45页